【題目】將一列有理數(shù)-1,2,-3,4,-5,6……,如圖所示有序排列.根據(jù)圖中的排列規(guī)律可知,1” 中峰頂?shù)奈恢茫?/span>C的位置)是有理數(shù)4,那么,5”C 的位置是有理數(shù) ,2017應(yīng)排在A、E 的位置.其中兩個(gè)填空依次為

A.24 , AB.24, AC.25, ED.25, E

【答案】A

【解析】

觀察不難發(fā)現(xiàn),每個(gè)峰排列5個(gè)數(shù),求出5個(gè)峰排列的數(shù)的個(gè)數(shù),再求出,“峰5”中C位置的數(shù)的序數(shù),然后根據(jù)排列的奇數(shù)為負(fù)數(shù),偶數(shù)為正數(shù)解答;用(2017-1)除以5,根據(jù)商和余數(shù)的情況確定所在峰中的位置即可.

解:∵每個(gè)峰需要5個(gè)數(shù),

4×5=20,20+1+3=24,

∴“峰5”中C位置的數(shù)的是24,

∵(2017-1)÷5=4031

-2017為“峰404”的第1個(gè)數(shù),排在A的位置.

故選A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,AB=AC=,cosC=

(1)動(dòng)手操作:利用尺規(guī)作以AC為直徑的⊙O,并標(biāo)出⊙O與AB的交點(diǎn)D,與BC的交點(diǎn)E(保留作圖痕跡,不寫(xiě)作法);

(2)綜合應(yīng)用:在你所作的圖中,

①求證:弧DE=弧CE ;②求點(diǎn)D到BC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了美化生活環(huán)境,小蘭的爸爸要在院墻外的一塊空地上修建一個(gè)矩形花圃.如圖所示,矩形花圃的一邊利用長(zhǎng)10米的院墻,另外三條邊用籬笆圍成,籬笆的總長(zhǎng)為32米.設(shè)AB的長(zhǎng)為x米,矩形花圃的面積為y平方米.

(1)用含有x的代數(shù)式表示BC的長(zhǎng),BC=   ;

(2)求yx的函數(shù)關(guān)系式,寫(xiě)出自變量x的取值范圍;

(3)當(dāng)x為何值時(shí),y有最大值?最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用三角形和六邊形按如圖所示的規(guī)律拼圖案.

1)第4個(gè)圖案中,三角形有______個(gè),六邊形有______個(gè);

2)第為正整數(shù))個(gè)圖案中,三角形與六邊形各有多少個(gè)?

3)第2019個(gè)圖案中,三角形與六邊形共有多少個(gè)?

4)是否存在某個(gè)符合上述規(guī)律的圖案,其中有100個(gè)三角形與48個(gè)六邊形?如果有,指出是第幾個(gè)圖案;如果沒(méi)有,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀對(duì)學(xué)生的成長(zhǎng)有著深遠(yuǎn)的影響,某中學(xué)為了解學(xué)生每周課余閱讀的時(shí)間,在本校隨機(jī)抽取了若干名學(xué)生進(jìn)行調(diào)查,并依據(jù)調(diào)查結(jié)果繪制了以下不完整的統(tǒng)計(jì)圖表8.

請(qǐng)根據(jù)圖表中的信息,解答下列問(wèn)題:

(1)表中的a=______,b=______,中位數(shù)落在________組,將頻數(shù)分布直方圖補(bǔ)全;

(2)估計(jì)該校2000名學(xué)生中,每周課余閱讀時(shí)間不足0.5小時(shí)的學(xué)生大約有多少名?

(3)E組的4人中,有1名男生和3名女生,該校計(jì)劃在E組學(xué)生中隨機(jī)選出2人向全校同學(xué)作讀書(shū)心得報(bào)告,請(qǐng)用畫(huà)樹(shù)狀圖或列表法求抽取的2名學(xué)生剛好是1名男生和1名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AO△ABC的角平分線(xiàn).以O為圓心,OC為半徑作⊙O.

(1)求證:AB⊙O的切線(xiàn).

2)已知AOO于點(diǎn)E,延長(zhǎng)AOO于點(diǎn)D,tanD=,求的值.

(3)在(2)的條件下,設(shè)⊙O的半徑為3,求AB的長(zhǎng).

【答案】(1)證明見(jiàn)解析(2) (3)

【解析】試題分析:(1)過(guò)OOF⊥ABF,由角平分線(xiàn)上的點(diǎn)到角兩邊的距離相等即可得證;(2)連接CE,證明△ACE∽△ADC可得= tanD;(3)先由勾股定理求得AE的長(zhǎng),再證明△B0F∽△BAC,得,設(shè)BO="y" BF=z,列二元一次方程組即可解決問(wèn)題.

試題解析:(1)證明:作OF⊥ABF

∵AO∠BAC的角平分線(xiàn),∠ACB=90

∴OC=OF

∴AB⊙O的切線(xiàn)

2)連接CE

∵AO∠BAC的角平分線(xiàn),

∴∠CAE=∠CAD

∵∠ACE所對(duì)的弧與∠CDE所對(duì)的弧是同弧

∴∠ACE=∠CDE

∴△ACE∽△ADC

= tanD

3)先在△ACO中,設(shè)AE=x,

由勾股定理得

(x3)="(2x)" 3 ,解得x="2,"

∵∠BFO=90°=∠ACO

易證Rt△B0F∽R(shí)t△BAC

,

設(shè)BO=y BF=z

4z=93y,4y=123z

解得z=y=

∴AB=4=

考點(diǎn):圓的綜合題.

型】解答
結(jié)束】
22

【題目】已知:二次函數(shù)的圖象與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,其中點(diǎn)B在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,線(xiàn)段OB、OC的長(zhǎng)(OB<OC)是方程x2-10x+16=0的兩個(gè)根,且A點(diǎn)坐標(biāo)為(-6,0).

(1)求此二次函數(shù)的表達(dá)式;

(2)若點(diǎn)E是線(xiàn)段AB上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)A、點(diǎn)B不重合),過(guò)點(diǎn)E作EF∥AC交BC于點(diǎn)F,連接CE,設(shè)AE的長(zhǎng)為m,△CEF的面積為S,求S與m之間的函數(shù)關(guān)系式,并寫(xiě)出自變量m的取值范圍;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解方程:

(1)(x-5)2=16 (直接開(kāi)平方法) (2)x2+5x=0 (因式分解法)

(3)x2-4x+1=0 (配方法) (4)x2+3x-4=0 (公式法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“低碳生活,綠色出行”,2017年1月,某公司向深圳市場(chǎng)新投放共享單車(chē)640輛.

(1)1月份到4月份新投放單車(chē)數(shù)量的月平均增長(zhǎng)率相同,3月份新投放共享單車(chē)1000.請(qǐng)問(wèn)該公司4月份在深圳市新投放共享單車(chē)多少輛?

(2)考慮到自行車(chē)市場(chǎng)需求不斷增加,某商城準(zhǔn)備用不超過(guò)70000元的資金再購(gòu)進(jìn)AB兩種規(guī)格的自行車(chē)100輛,已知A型的進(jìn)價(jià)為500/輛,售價(jià)為700/輛,B型車(chē)進(jìn)價(jià)為1000/輛,售價(jià)為1300/輛。假設(shè)所進(jìn)車(chē)輛全部售完,為了使利潤(rùn)最大,該商城應(yīng)如何進(jìn)貨?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們定義:如圖1,在ABC看,把AB點(diǎn)A順時(shí)針旋轉(zhuǎn)α(0°<α<180°)得到AB',把AC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)β得到AC',連接B'C'.當(dāng)α+β=180°時(shí),我們稱(chēng)A'B'C'ABC旋補(bǔ)三角形”,AB'C'B'C'上的中線(xiàn)AD叫做ABC旋補(bǔ)中線(xiàn),點(diǎn)A叫做旋補(bǔ)中心”.

特例感知:

(1)在圖2,圖3中,AB'C'ABC旋補(bǔ)三角形”,ADABC旋補(bǔ)中線(xiàn)”.

①如圖2,當(dāng)ABC為等邊三角形時(shí),ADBC的數(shù)量關(guān)系為AD=   BC;

②如圖3,當(dāng)∠BAC=90°,BC=8時(shí),則AD長(zhǎng)為   

猜想論證:

(2)在圖1中,當(dāng)ABC為任意三角形時(shí),猜想ADBC的數(shù)量關(guān)系,并給予證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案