【題目】在平面直角坐標(biāo)系xOy中,我們把橫、縱坐標(biāo)都是整數(shù)的點叫做整點.已知點A(0,4),點B是x軸正半軸上的點,記△AOB內(nèi)部(不包括邊界)的整點個數(shù)為m.當(dāng)m=6時,點B的橫坐標(biāo)a的取值范圍是______.
【答案】4<a≤
【解析】
直接利用已知畫出符合題意的三角形找出臨界點,進而可得出答案.
解:如圖,當(dāng)△AOB內(nèi)部(不包括邊界)的整點個數(shù)為6時,
①當(dāng)點B在B1處時,即B1(4,0),此時有三個整點處在直線AB1上,所以a>4;
②當(dāng)點B在B2處時,直線AB2經(jīng)過點(4,1),此時△AB2O內(nèi)正好有6個整點,設(shè)此時直線AB2的解析式為y=kx+b,將點A(0,4),C(4,1)代入得,
,解得,即直線AB2的解析式為y=x+4,
當(dāng)y=0時,x+4=0,解得x=,
∴點B的橫坐標(biāo)a的取值范圍是:4<a≤.
故答案為:4<a≤.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P是正方形ABCD內(nèi)一點,點P到點A,B和D的距離分別為1,2,.△ADP沿點A旋轉(zhuǎn)至△ABP′,連接PP′,并延長AP與BC相交于點Q.
(1)求證:△APP′是等腰直角三角形;
(2)求∠BPQ的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,游客在點A處坐纜車出發(fā),沿A﹣B﹣D的路線可至山頂D處.已知AB=BD=800米,∠α=75°,∠β=45°,求山高DE(結(jié)果精確到1米).(參考數(shù)據(jù):sin75°=0.966,cos75°=0.259,tan75°=3.732,=1.414)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是⊙O的切線,切點為A,BC交⊙O于點D,點E是AC的中點.
(1)試判斷直線DE與⊙O的位置關(guān)系,并說明理由;
(2)若⊙O的半徑為3,∠ACB=40°,AC=7.2,求圖中陰影部分的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=﹣2x2+bx+c經(jīng)過點A(﹣1,﹣3)和點B(2,3)
(1)求這條拋物線所對應(yīng)的函數(shù)表達式.
(2)點M(x1,y1)、N(x2,y2)在這拋物線上,當(dāng)1≤x2<x1時,比較y1與y2的大小.
(3)點M(x1,y1)、N(x2,y2)在這拋物線上,若t≤x1≤t+1,當(dāng)x2≥3時,均有y1≥y2,直接寫出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,半圓O的直徑AB=5cm,點M在AB上且AM=1cm,點P是半圓O上的動點,過點B作BQ⊥PM交PM(或PM的延長線)于點Q.設(shè)PM=xcm,BQ=ycm.(當(dāng)點P與點A或點B重合時,y的值為0)小石根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進行了探究.下面是小石的探究過程,請補充完整:
(1)通過取點、畫圖、測量,得到了x與y的幾組值,如下表:
x/cm | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 |
y/cm | 0 | 3.7 | ______ | 3.8 | 3.3 | 2.5 | ______ |
(2)建立平面直角坐標(biāo)系,描出以補全后的表中各對對應(yīng)值為坐標(biāo)的點,畫出該函數(shù)的圖象;
(3)結(jié)合畫出的函數(shù)圖象,解決問題:當(dāng)BQ與直徑AB所夾的銳角為60°時,PM的長度約為______cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明想利用太陽光測量樓高,他帶著皮尺來到一棟樓下,發(fā)現(xiàn)對面墻上有這棟樓的影子,針對這種情況,他設(shè)計了一種測量方案,具體測量情況如下:如示意圖,小明邊移動邊觀察,發(fā)現(xiàn)站到點E處時,可以使自己落在墻上的影子與這棟樓落在墻上的影子重疊,且高度恰好相同.此時,測得小明落在墻上的影子高度CD=1.2m,CE=0.8m,CA=30m(點A、E、C在同一直線上).已知小明的身高EF是1.7m,請你幫小明求出樓高AB(結(jié)果精確到0.1m).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】附加題:如圖,直線:與軸、軸分別交于點、,經(jīng)過、兩點的拋物線與軸的另一個交點為.
(1)求該拋物線的解析式;
(2)若點在直線下方的拋物線上,過點作軸交于點,軸交于點,求的最大值;
(3)設(shè)為直線上的點,以、、、為頂點的四邊形能否構(gòu)成平行四邊形?若能,求出點的坐標(biāo);若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,斜坡AB長10米,按圖中的直角坐標(biāo)系可用y=x+5表示,點A,B分別在x軸和y軸上.在坡上的A處有噴灌設(shè)備,噴出的水柱呈拋物線形落到B處,拋物線可用y=x2+bx+c表示.
(1)求拋物線的函數(shù)關(guān)系式(不必寫自變量取值范圍);
(2)求水柱離坡面AB的最大高度;
(3)在斜坡上距離A點2米的C處有一顆3.5米高的樹,水柱能否越過這棵樹?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com