【題目】如圖,點(diǎn)P是正方形ABCD內(nèi)一點(diǎn),點(diǎn)P到點(diǎn)A,BD的距離分別為1,2.△ADP沿點(diǎn)A旋轉(zhuǎn)至ABP,連接PP,并延長(zhǎng)APBC相交于點(diǎn)Q.

(1)求證:APP是等腰直角三角形;

(2)BPQ的大小.

【答案】(1)證明見(jiàn)解析;(2)BPQ=45°.

【解析】

(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可知,APD≌△AP′B,所以AP=AP′,PAD=P′AB,因?yàn)椤?/span>PAD+PAB=90°,所以∠P′AB+PAB=90°,即∠PAP′=90°,故APP′是等腰直角三角形;

(2)根據(jù)勾股定理逆定理可判斷PP′B是直角三角形,再根據(jù)平角定義求出結(jié)果.

(1)證明:∵四邊形ABCD為正方形,

AB=AD,BAD=90°,

∵△ADP沿點(diǎn)A旋轉(zhuǎn)至ABP′,

AP=AP′,PAP′=DAB=90°,

∴△APP′是等腰直角三角形;

(2)解:∵△APP′是等腰直角三角形,

PP′=PA=APP′=45°,

∵△ADP沿點(diǎn)A旋轉(zhuǎn)至ABP′,

PD=P′B=,

PP′B中,PP′=,PB=2,P′B=,

2+(22=(2

PP′2+PB2=P′B2,

∴△PP′B為直角三角形,∠P′PB=90°,

∴∠BPQ=180°﹣APP′﹣P′PB=180°﹣45°﹣90°=45°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ADBECF,它們依次交直線(xiàn)l1、l2于點(diǎn)AB、C和點(diǎn)D、EF,,AC=14

1)求AB、BC的長(zhǎng);

2)如果AD=7,CF=14,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將矩形ABCD繞點(diǎn)A旋轉(zhuǎn)至矩形AB′C′D′位置,此時(shí)AC′的中點(diǎn)恰好與D點(diǎn)重合,AB′CD于點(diǎn)E.若AB=6,則AEC的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是菱形,∠A60°AB2,扇形EBF的半徑為2,圓心角為60°,則圖中陰影部分的面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線(xiàn)y=ax2+bx+c的頂點(diǎn)為D(﹣12),與x軸的一個(gè)交點(diǎn)A在點(diǎn)(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則以下結(jié)論:①b24ac0;②a+b+c0;③ca=2;④方程ax2+bx+c2=0有兩個(gè)相等的實(shí)數(shù)根.其中正確結(jié)論的個(gè)數(shù)為( 。

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某賓館有客房間供游客居住,當(dāng)每間客房的定價(jià)為每天元時(shí),客房恰好全部住滿(mǎn);如果每間客房每天的定價(jià)每增加元,就會(huì)減少間客房出租.設(shè)每間客房每天的定價(jià)增加元,賓館出租的客房為間.求:

關(guān)于的函數(shù)關(guān)系式;

如果某天賓館客房收入元,那么這天每間客房的價(jià)格是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正方形ABCD的頂點(diǎn)A與原點(diǎn)O重合,頂點(diǎn)B在直線(xiàn)l上,將正方形沿射線(xiàn)OB方向無(wú)滑動(dòng)地翻滾.若直線(xiàn),正方形邊長(zhǎng)為2

1)翻滾后點(diǎn)A第一次落在直線(xiàn)l上的坐標(biāo)是_____;

2)當(dāng)正方形翻滾2002次點(diǎn)A對(duì)應(yīng)點(diǎn)的坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料:各類(lèi)方程的解法

求解一元一次方程,根據(jù)等式的基本性質(zhì),把方程轉(zhuǎn)化為的形式:求解二元一次方程組,把它轉(zhuǎn)化為一元一次方程來(lái)解;類(lèi)似的,求解三元一次方程組,把它轉(zhuǎn)化為二元一次方程組來(lái)解;求解一元二次方程,把它轉(zhuǎn)化為兩個(gè)一元一次方程來(lái)解:求解分式方程,把它轉(zhuǎn)化為整式方程來(lái)解,由于“去分母”可能產(chǎn)生增根,所以解分式方程必須檢驗(yàn).各類(lèi)方程的解法不盡相同,但是它們有一個(gè)共同的基本數(shù)學(xué)思想一一轉(zhuǎn)化,把未知轉(zhuǎn)化為已知.用“轉(zhuǎn)化”的數(shù)學(xué)思想,我們還可以解一些新的方程.例如,一元三次方程,可以通過(guò)因式分解把它轉(zhuǎn)化為,解方程,可得方程的解.利用上述材料給你的啟示,解下列方程;

1;

2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一人站在兩等高的路燈之間走動(dòng),為人在路燈照射下的影子,為人在路燈照射下的影子.當(dāng)人從點(diǎn)走向點(diǎn)時(shí)兩段影子之和的變化趨勢(shì)是(

A.先變長(zhǎng)后變短B.先變短后變長(zhǎng)

C.不變D.先變短后變長(zhǎng)再變短

查看答案和解析>>

同步練習(xí)冊(cè)答案