【題目】已知,在四邊形ABCD中,AD∥BC,AB∥DC,點(diǎn)E在BC延長(zhǎng)線上,連接DE,∠A+∠E=180°.
(1)如圖1,求證:CD=DE;
(2)如圖2,過(guò)點(diǎn)C作BE的垂線,交AD于點(diǎn)F,請(qǐng)直接寫出BE、AF、DF 之間的數(shù)量關(guān)系_______________________;
(3)如圖3,在(2)的條件下,∠ABC的平分線,交CD于G,交CF于H,連接FG,若∠FGH=45°,DF=8,CH=9,求BE的長(zhǎng).
【答案】(1)證明見(jiàn)解析;(2)BE=AF+3DF;(3)31
【解析】
(1)利用等角的補(bǔ)角判斷出∠DCE=∠E即可;
(2)先判斷出四邊形CFDN是矩形,再判斷出CN=NE=FD,即可得出結(jié)論;
(3)先判斷出∠ABG=∠BGC,進(jìn)而得出四邊形BCFM是正方形,即可判斷出△BMK≌△BCH,再用勾股定理求出BM=15,即可得出AD=BC=BM=15,即可求出結(jié)論.
(1)∵
四邊形ABCD是平行四邊形,
∴∠A=∠BCD,
∵∠A+∠E=180°,∠BCD+∠DCE=180°,
∴∠DCE=∠E,
∴CD=DE;
(2)如圖2,過(guò)點(diǎn)D作DN⊥BE于N,
∵CF⊥BE,
∴∠DNC=∠BCF=90°,
∴FC∥DN,
∵四邊形ABCD是平行四邊形,
∴AD∥BC,
∴四邊形CFDN是矩形,
∴FD=CN,
∵CD=DE,DN⊥CE,
∴CN=NE=FD,
∵四邊形ABCD是平行四邊形,
∴BC=AD=AF+FD,
∴BE=AF+3DF.
(3)如圖3,過(guò)點(diǎn)B作BM⊥AD于點(diǎn)M,延長(zhǎng)FM至K,使KM=HC.連接BK,
∵ABCD,
∴AB∥CD,
∴∠ABG=∠BGC,
∵BG平分∠ABC,
∴設(shè)∠ABG=∠CBG=∠BGC=α,
∴BC=CG,
∵∠FGH=45°,
∴∠FGC=45°+α,
∵∠BCF=90°,
∴∠BHC=∠FHG=90°-α,
∴∠HFG=45°+α=∠FGC,
∴FC=CG=BC,
∵BM⊥AD,
∴∠MBC=90°=∠FCE=∠MFC,
∴四邊形BCFM是矩形,
∵BC=FC,
∴四邊形BCFM是正方形,
∴BM=MF=BC=AD,
∴MA=DF=8,
∵∠KMB=∠BCH=90°,KM=CH,
∴△BMK≌△BCH,
∴KM=CH=9,∠KBM=∠CBH=α,∠K=∠BHC=90°-α,
∵∠MBC=90°,
∴∠MBA=90°-2α,
∴∠KBA=90°-α=∠K,
∴AB=AK=8+9=17,
在Rt△ABM中,∠BMA=90°,BM==15,
∴AD=BC=BM=15,
∴AF=AD-DF=15-8=7,
∴BE=AF+3DF=7+3×8=31.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】新知:對(duì)角線垂直的四邊形兩組對(duì)邊的平方和相等
感知與認(rèn)證:如圖1,2,3中,四邊形ABCD中于O,如圖1,AC與BD相互平分,如圖2,AC平分BD,結(jié)論顯然成立.
認(rèn)知證明:(1)請(qǐng)你證明如圖3中有成立。
發(fā)現(xiàn)應(yīng)用:(2)如圖4,若AF,BE是三角形ABC的中線,垂足為P
已知:,,求AB的長(zhǎng)
拓展應(yīng)用:(3)如圖5,在平行四邊形ABCD中,點(diǎn)E,F,G分別是AD,BC,CD的中點(diǎn),,,.求AF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AD是中線,E是AD的中點(diǎn),過(guò)點(diǎn)A作AF∥BC交BE的延長(zhǎng)線于F,連接CF.
(1)求證:AD=AF;
(2)如果AB=AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠甲、乙兩個(gè)部門各有員工400人,為了解這兩個(gè)部門員工的生產(chǎn)技能情況,進(jìn)行了抽樣調(diào)查,過(guò)程如下,請(qǐng)補(bǔ)充完整.
收集數(shù)據(jù)
從甲、乙兩個(gè)部門各隨機(jī)抽取20名員工,進(jìn)行了生產(chǎn)技能測(cè)試,測(cè)試成績(jī)(百分制)如下:
甲 78 86 74 81 75 76 87 70 75 90
75 79 81 70 74 80 86 69 83 77
乙 93 73 88 81 72 81 94 83 77 83
80 81 70 81 73 78 82 80 70 40
整理、描述數(shù)據(jù)
按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):
成績(jī) 人數(shù) 部門 | 40≤x≤49 | 50≤x≤59 | 60≤x≤69 | 70≤x≤79 | 80≤x≤89 | 90≤x≤100 |
甲 | 0 | 0 | 1 | 11 | 7 | 1 |
乙 |
(說(shuō)明:成績(jī)80分及以上為生產(chǎn)技能優(yōu)秀,70--79分為生產(chǎn)技能良好,60--69分為生產(chǎn)技能合格,60分以下為生產(chǎn)技能不合格)
分析數(shù)據(jù)
兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)如下表所示:
部門 | 平均數(shù) | 中位數(shù) | 眾數(shù) |
甲 | 78.3 | 77.5 | 75 |
乙 | 78 | 80.5 | 81 |
得出結(jié)論:
.估計(jì)乙部門生產(chǎn)技能優(yōu)秀的員工人數(shù)為_(kāi)___________;
.可以推斷出_____________部門員工的生產(chǎn)技能水平較高,理由為_(kāi)____________.(至少?gòu)膬蓚(gè)不同的角度說(shuō)明推斷的合理性)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,D是弧BC的中點(diǎn),DE⊥AC交AC的延長(zhǎng)線于E,⊙O的切線BF交AD的延長(zhǎng)線于F.
(1)求證:DE是⊙O的切線;
(2)若DE=3,⊙O的半徑為5.求BF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點(diǎn)P是BC的中點(diǎn),兩邊PE、PF分別交AB、AC于點(diǎn)E、F,給出以下五個(gè)結(jié)論:①AE=CF;②∠APE=∠CPF;③△EPF是等腰直角三角形;④EF=AP;⑤.當(dāng)∠EPF在△ABC內(nèi)繞頂點(diǎn)P旋轉(zhuǎn)時(shí)(點(diǎn)E不與點(diǎn)A、B重合),上述結(jié)論中始終正確的序號(hào)有 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖直線l:y=kx+6與x軸、y軸分別交于點(diǎn)B、C兩點(diǎn),點(diǎn)B的坐標(biāo)是(﹣8,0),點(diǎn)A的坐標(biāo)為(﹣6,0).
(1)求k的值.
(2)若點(diǎn)P是直線l在第二象限內(nèi)一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△PAC的面積為3,求出此時(shí)直線AP的解析式.
(3)在x軸上是否存在一點(diǎn)M,使得△BCM為等腰三角形?若存在,請(qǐng)直接寫出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是兩塊完全一樣的含30°角的直角三角尺,分別記做△ABC與△A′B′C′,現(xiàn)將兩塊三角尺重疊在一起,設(shè)較長(zhǎng)直角邊的中點(diǎn)為M,繞中點(diǎn)M轉(zhuǎn)動(dòng)上面的三角尺ABC,使其直角頂點(diǎn)C恰好落在三角尺A′B′C′的斜邊A′B′上.當(dāng)∠A=30°,AC=10時(shí),兩直角頂點(diǎn)C,C′間的距離是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+(2k+3)x+k2=0有兩個(gè)不相等的實(shí)數(shù)根x1,x2.若=﹣1,則k的值為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com