【題目】如圖,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點P是BC的中點,兩邊PE、PF分別交AB、AC于點E、F,給出以下五個結(jié)論:①AE=CF;②∠APE=∠CPF;③△EPF是等腰直角三角形;④EF=AP;⑤.當∠EPF在△ABC內(nèi)繞頂點P旋轉(zhuǎn)時(點E不與點A、B重合),上述結(jié)論中始終正確的序號有 .
【答案】①②③⑤
【解析】試題分析:根據(jù)等腰直角三角形的性質(zhì)可得AP⊥BC,AP=PC,∠EAP=∠C=45°,根據(jù)同角的余角相等求出∠APE=∠CPF,判定②正確,然后利用“角邊角”證明△APE和△CPF全等,根據(jù)全等三角形的可得AE=CF,判定①正確,再根據(jù)等腰直角三角形的定義得到△EFP是等腰直角三角形,判定③正確;根據(jù)等腰直角三角形的斜邊等于直角邊的倍表示出EF,可知EF隨著點E的變化而變化,判定④錯誤,根據(jù)全等三角形的面積相等可得△APE的面積等于△CPF的面積相等,然后求出四邊形AEPF的面積等于△ABC的面積的一半,判定⑤正確.
試題解析:∵AB=AC,∠BAC=90°,點P是BC的中點,
∴∠EAP=∠BAC=45°,AP=BC=CP.
①在△AEP與△CFP中,
∵∠EAP=∠C=45°,AP=CP,∠APE=∠CPF=90°-∠APF,
∴△AEP≌△CFP,
∴AE=CF.正確;
②由①知,△AEP≌△CFP,
∴∠APE=∠CPF.正確;
③由①知,△AEP≌△CFP,
∴PE=PF.
又∵∠EPF=90°,
∴△EPF是等腰直角三角形.正確;
④只有當F在AC中點時EF=AP,故不能得出EF=AP,錯誤;
⑤∵△AEP≌△CFP,同理可證△APF≌△BPE.
∴S四邊形AEPF=S△AEP+S△APF=S△CPF+S△BPE=S△ABC.正確.
故正確的序號有①②③⑤
科目:初中數(shù)學 來源: 題型:
【題目】已知直線,直線與直線、分別相交于C、D兩點.
(1)如圖a,有一動點P在線段CD之間運動(不與C、D兩點重合),問在點P的運動過程中,是否始終具有∠3+∠1=∠2這一關(guān)系,為什么?
(2)如圖b,當動點P線段CD之外運動(不與C、D兩點重合),問上述結(jié)論是否成立?若不成立,試寫出新的結(jié)論并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法錯誤的是( 。
A. 一次函數(shù)y=﹣2x+3,y隨x的增大而減小,
B. 反比例函數(shù)中,y隨x的增大而增大,
C. 拋物線y=x2+1與y=x2﹣1的形狀相同,只是位置不同,
D. 二次函數(shù)y=﹣2(x﹣2)2+3中,當x>2時,y隨x的增大而減小
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,邊AB的垂直平分線交AD于點E,交CB的延長線于點F,連接AF,BE.
(1)求證:△AGE≌△BGF;
(2)試判斷四邊形AFBE的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,在四邊形ABCD中,AD∥BC,AB∥DC,點E在BC延長線上,連接DE,∠A+∠E=180°.
(1)如圖1,求證:CD=DE;
(2)如圖2,過點C作BE的垂線,交AD于點F,請直接寫出BE、AF、DF 之間的數(shù)量關(guān)系_______________________;
(3)如圖3,在(2)的條件下,∠ABC的平分線,交CD于G,交CF于H,連接FG,若∠FGH=45°,DF=8,CH=9,求BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】體育老師對九年級(9)班50位學生進行一分鐘跳繩次數(shù)測試,以測試數(shù)據(jù)為樣本,繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖.如下所示:
組別 | 次數(shù)x | 頻數(shù)(人數(shù)) |
第1組 | 80≤x<100 | 6 |
第2組 | 100≤x<120 | 8 |
第3組 | 120≤x<140 | a |
第4組 | 140≤x<160 | 18 |
第5組 | 160≤x<180 | 6 |
請結(jié)合圖表完成下列問題:
(1)表中的a=________;
(2)請把頻數(shù)分布直方圖補充完整;
(3)這個樣本數(shù)據(jù)的中位數(shù)落在第________組;
(4)若九年級學生一分鐘跳繩次數(shù)(x)達標要求是:x<120為不合格;120≤x<140,為合格;140≤x<160為良;x≥160為優(yōu).根據(jù)以上信息,請你給學;蚓拍昙壨瑢W提一條合理化建議:_________________________________________________________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】趙爽弦圖是由四個全等的直角三角形與中間的一個小正方形拼成的一個大正方形,如圖所示,若這四個全等直角三角形的兩條直角邊分別平行于x軸和y軸,大正方形的頂點B1、C1、C2、C3、…、Cn在直線y=﹣上,頂點D1、D2、D3、…、Dn在x軸上,則第n個陰影小正方形的面積為__.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店原來將進貨價為8元的商品按10元售出,每天可銷售200件.現(xiàn)在采用提高售價,減少進貨量的方法來增加利潤,已知每件商品漲價1元,每天的銷售量就減少20件.設這種商品每個漲價元.
(1)填空:原來每件商品的利潤是 元,漲價后每件商品的實際利潤是 元 (可用含的代數(shù)式表示);
(2)為了使每天獲得700元的利潤,售價應定為多少元?
(3)售價定為多少元時,每天利潤最大,最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖:一張矩形紙片,,,為邊上一動點,將矩形沿折疊,要使點落在上,則折痕的長度是________;若點落在上,則折痕與的位置關(guān)系是__________.若翻折后點的對應點是點,連接,則在點運動的過程中,的最小值是______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com