【題目】已知:正方形ABCD的邊長(zhǎng)為aP是邊CD上一個(gè)動(dòng)點(diǎn)不與C、D重合,CP=b,以CP為一邊在正方形ABCD外作正方形PCEF,連接BF、DF

觀察計(jì)算:(1)如圖1,當(dāng)a=4,b=1時(shí),四邊形ABFD的面積為   ;

(2)如圖2,當(dāng)a=4,b=2時(shí),四邊形ABFD的面積為   ;

(3)如圖3,當(dāng)a=4,b=3時(shí),四邊形ABFD的面積為   ;

探索發(fā)現(xiàn):

(4)根據(jù)上述計(jì)算的結(jié)果,你認(rèn)為四邊形ABFD的面積與正方形ABCD的面積之間有怎樣的關(guān)系?

綜合應(yīng)用:

(5)農(nóng)民趙大伯有一塊正方形的土地(如圖5),由于修路被占去一塊三角形的地方△BCE,但決定在DE的右側(cè)補(bǔ)給趙大伯一塊土地,補(bǔ)償后的土地為四邊形ABMD,且四邊形ABMD的面積與原來正方形土地的面積相等,M、E、B三點(diǎn)要在一條直線上,請(qǐng)你在圖5中畫圖確定M點(diǎn)的位置.并證明你的結(jié)論.

【答案】16 16 16 相等與正方形PCEF的邊長(zhǎng)無關(guān)

【解析】試題分析:

14×4+1+4×1÷2-1×5÷2=16;

24×4+2+4×2÷2-2×6÷2=16;

34×4+3+4×3÷2-3×7÷2=16;

4)無論點(diǎn)PCD邊上的什么位置,四邊形ABFD的面積與正方形ABCD的面積相等,與正方形PCEF的邊長(zhǎng)無關(guān).

證明:連接BD,CF,

四邊形ABCD是正方形,

∴∠DBC=45°

同理∠FCE=45°,

∴BD∥CF

∴S△BCD=S△BDF,

四邊形ABFD的面積與正方形ABCD的面積相等;

5)如圖5,作BC的延長(zhǎng)線CN,作∠DCN的角平分線交BE的延長(zhǎng)線于點(diǎn)M,則四邊形ABMD的面積與正方形ABCD的面積相等,點(diǎn)M即為所求.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】x+1≤3的解集是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀與理解:

圖1是邊長(zhǎng)分別為a和b(a>b)的兩個(gè)等邊三角形紙片ABC和C′DE疊放在一起(C與C′重合)的圖形.

操作與證明:

(1)操作:固定△ABC,將△C′DE繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)30°,連接AD,BE,如圖2;在圖2中,線段BE與AD之間具有怎樣的大小關(guān)系?證明你的結(jié)論;

(2)操作:若將圖1中的△C′DE,繞點(diǎn)C按順時(shí)針方向任意旋轉(zhuǎn)一個(gè)角度α,連接AD,BE,如圖3;在圖3中,線段BE與AD之間具有怎樣的大小關(guān)系?證明你的結(jié)論;

猜想與發(fā)現(xiàn):

(3)根據(jù)上面的操作過程,請(qǐng)你猜想當(dāng)α為多少度時(shí),線段AD的長(zhǎng)度最大是多少?當(dāng)α為多少度時(shí),線段AD的長(zhǎng)度最小是多少?

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】鮮花餅是云南的特色小吃,也是中國(guó)四大月餅流派滇式月餅的經(jīng)典代表之一,深受人們喜愛.現(xiàn)某車間要為鮮花餅制作長(zhǎng)方體包裝盒,已知一個(gè)盒子由一個(gè)盒身和兩個(gè)盒底構(gòu)成,每一張紙板可以做盒身10個(gè)或盒底30個(gè).現(xiàn)有紙板100張,應(yīng)用多少張制作盒身,多少張制作盒底,才能使盒身和盒底正好配套?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】方程﹣2x﹣1=1的解為x=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】氣魄雄偉的大禮堂座落在渝中區(qū)學(xué)田灣,它是一座仿古民族建筑.“五一”期間,小明和媽媽到重慶大禮堂參觀游玩.參觀結(jié)束后,穿過人民廣場(chǎng)到達(dá)A處,回望禮堂,更顯氣勢(shì)雄偉,金碧輝煌.此時(shí),在A點(diǎn)觀察到禮堂頂端的仰角為30°,沿著坡度為1:3的斜坡AB走一段距離到達(dá)B點(diǎn),觀察到禮堂頂端 的仰角是22°,測(cè)得點(diǎn)A與BC之間的水平距離米,則大禮堂的高度DE為( )米.(精確到1米.參考數(shù)據(jù): , .)

A. 58 B. 60 C. 62 D. 64

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一些相同的房間需要粉刷墻面,一天4名一級(jí)技工去粉刷10個(gè)房間,結(jié)果其中有 墻面未來得及粉刷;同樣時(shí)間內(nèi)7名二級(jí)技工粉刷了15個(gè)房間之外,還多粉刷了另外的墻面每名一級(jí)技工比二級(jí)技工一天多粉刷墻面設(shè)每個(gè)房間需要粉刷的墻面面積為平方米,一級(jí)技工每天粉刷y平方米,下列方程正確有 個(gè)

1 2

3 4

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分解因式:

(1)5x2+10x+5

(2)(a+4)(a﹣4)+3(a+2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為鼓勵(lì)大學(xué)畢業(yè)生自主創(chuàng)業(yè),某市政府出臺(tái)了相關(guān)政策:由政府協(xié)調(diào),本市企業(yè)按成本價(jià)提供產(chǎn)品給大學(xué)畢業(yè)生自主銷售,成本價(jià)與出廠價(jià)之間的差價(jià)由政府承擔(dān).張剛按照相關(guān)政策投資銷售本市生產(chǎn)的一種新型節(jié)能燈.已知這種節(jié)能燈的成本價(jià)為每件10元,出廠價(jià)為每件12元,每月銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系近似滿足一次函數(shù):y=﹣10x+500.
(1)張剛在開始創(chuàng)業(yè)的第一個(gè)月將銷售單價(jià)定為20元,那么政府這個(gè)月為他承擔(dān)的總差價(jià)為多少元?
(2)設(shè)張剛獲得的利潤(rùn)為w(元),當(dāng)銷售單價(jià)定為多少元時(shí),每月可獲得最大利潤(rùn)?
(3)物價(jià)部門規(guī)定,這種節(jié)能燈的銷售單價(jià)不得高于25元.如果張剛想要每月獲得的利潤(rùn)不低于3000元,那么政府為他承擔(dān)的總差價(jià)最少為多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案