【題目】如圖,在四邊形ABCD中,AB=AD,CB=CD,AC與BD相交于O點(diǎn),OC=OA,若E是CD上任意一點(diǎn),連接BE交AC于點(diǎn)F,連接DF.
(1)證明:△CBF≌△CDF;
(2)若AC=2,BD=2,求四邊形ABCD的周長。
【答案】(1)證明見解析;(2)四邊形ABCD的周長為8.
【解析】試題分析:(1)首先利用SSS定理證明△ABC≌△ADC可得∠BCA=∠DCA即可證明△CBF≌△CDF.
(2) 由△CBF≌△CDF,可知,∠BCF=∠DCF,又CB=CD,得出OB=OD,∠COB=∠COD=90°,因?yàn)?/span>OC=OA,所以AC與BD互相垂直平分,即可證得四邊形ABCD是菱形,然后根據(jù)勾股定理全等AB長,進(jìn)而求得四邊形的面積.
試題解析(1)證明:在△ABC和△ADC中, ,
∴△ABC≌△ADC(SSS),
∴∠BCA=∠DCA,
在△CBF和△ADF中, ,
∴△CBF≌△CDF(SAS)
(2)∵△CBF≌△CDF,
∴∠BCF=∠DCF,
∴OB=OD,BD⊥AC,
∵OA=OC,
∴四邊形ABCD是菱形,
∴AB=BC=CD=DA,
∵AC=2,BD=2,
∴OA=,OB=1,
∴AB=,
∴四邊形ABCD的周長=4AB=4×2=8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,將點(diǎn)A(1,﹣2)向上平移3個(gè)單位長度,再向左平移2個(gè)單位長度,得到點(diǎn)A′,則點(diǎn)A′的坐標(biāo)是( )
A.(﹣1,1)
B.(﹣1,﹣2)
C.(﹣1,2)
D.(1,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把一條彎曲的公路改成直道,可以縮短路程,其道理用幾何知識(shí)解釋正確的是( )
A.線段可以比較大小
B.線段有兩個(gè)端點(diǎn)
C.兩點(diǎn)之間線段最短
D.過兩點(diǎn)有且只有一條直線
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線CP是AB的中垂線且交AB于P,其中AP=2CP.甲、乙兩人想在AB上取兩點(diǎn)D、E,使得AD=DC=CE=EB,其作法如下: 甲:作∠ACP、∠BCP之角平分線,分別交AB于D、E,則D、E即為所求;
乙:作AC、BC之中垂線,分別交AB于D、E,則D、E即為所求.
對(duì)于甲、乙兩人的作法,下列判斷何者正確( )
A.兩人都正確
B.兩人都錯(cuò)誤
C.甲正確,乙錯(cuò)誤
D.甲錯(cuò)誤,乙正確
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知(m﹣3)x|m|﹣2+4=18是關(guān)于x的一元一次方程,則( 。
A. m=1B. m=3C. m=﹣3D. m=±3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸上A、B、C三點(diǎn)對(duì)應(yīng)的數(shù)分別是a、b、c,若ab<0,c為最大的負(fù)整數(shù),c>a且|b|>|a|.
(1)請?jiān)跀?shù)軸上標(biāo)出A,B,C三點(diǎn)的大致位置;
(2)化簡|a﹣b|+|b﹣a+c|﹣|b﹣c|.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠1=18°18′,∠2=18.18°,∠3=18.3°,下列結(jié)論正確的是( )
A.∠1=∠3
B.∠1=∠2
C.∠2=∠3
D.∠1=∠2=∠3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,E為CD的中點(diǎn),連接AE、BE,BE⊥AE,延長AE交BC的延長線于點(diǎn)F.
求證:
(1)FC=AD
(2)AB=BC+AD.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com