【題目】在平面直角坐標系中的位置如圖所示.

在圖中畫出與關(guān)于y軸對稱的圖形,并寫出頂點、的坐標;

若將線段平移后得到線段,且,求的值.

【答案】(1)作圖見解析,A1(2,3)、B1(3,2)、C1(1,1);(2)a+b=-1.

【解析】

(1)根據(jù)軸對稱的性質(zhì)確定出點A1、B1、C1的坐標,然后畫出圖形即可;

(2)由點A1、C1的坐標,根據(jù)平移與坐標變化的規(guī)律可規(guī)定出a、b的值,從而可求得a+b的值.

解:(1)如圖所示:

A1(2,3)、B1(3,2)、C1(1,1).

(2)A1(2,3)、C1(1,1),A2(a,2),C2(-2,b).

∴將線段A1C1向下平移了1個單位,向左平移了3個單位.

a=-1,b=0.

a+b=-1+0=-1.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AD平分∠BAC,CDAD于點D,DCB=B.若AC=10,AB=25,求CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工程交由甲、乙兩個工程隊來完成,已知甲工程隊單獨完成需要60天,乙工程隊單獨完成需要40

(1)若甲工程隊先做30天后,剩余由乙工程隊來完成,還需要用時   

(2)若甲工程隊先做20天,乙工程隊再參加,兩個工程隊一起來完成剩余的工程,求共需多少天完成該工程任務(wù)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在等腰三角形ABC中,AB=AC=4,BC=7.如圖2,在底邊BC上取一點D,連結(jié)AD,使得∠DAC=∠ACD.如圖3,將△ACD沿著AD所在直線折疊,使得點C落在點E處,連結(jié)BE,得到四邊形ABED.則BE的長是(

A.4
B.
C.3
D.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正方形ABCD邊長為1,∠EAF=45°,AE=AF,則有下列結(jié)論:
①∠1=∠2=22.5°;
②點C到EF的距離是 -1;
③△ECF的周長為2;
④BE+DF>EF.
其中正確的結(jié)論是 . (寫出所有正確結(jié)論的序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD∥BC,∠ABC=90°,E是AB上一點,且DE⊥CE.若AD=1,BC=2,CD=3,則CE與DE的數(shù)量關(guān)系正確的是( )

A.CE= DE
B.CE= DE
C.CE=3DE
D.CE=2DE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖示我國漢代數(shù)學家趙爽在注解《周脾算經(jīng)》時給出的“趙爽弦圖”,圖中的四個直角三角形是全等的,如果大正方形ABCD的面積是小正方形EFGH面積的13倍,那么tan∠ADE的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某地新建的一個企業(yè),每月將生產(chǎn)1960噸污水,為保護環(huán)境,該企業(yè)計劃購置污水處理器,并在如下兩個型號種選擇:

污水處理器型號

A型

B型

處理污水能力(噸/月)

240

180

已知商家售出的2臺A型、3臺B型污水處理器的總價為44萬元,售出的1臺A型、4臺B型污水處理器的總價為42萬元.

(1)求每臺A型、B型污水處理器的價格;

(2)為確保將每月產(chǎn)生的污水全部處理完,該企業(yè)決定購買上述的污水處理器,那么他們至少要支付多少錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,第一個正方形的頂點A1(﹣1,1),B1(1,1);第二個正方形的頂點A2(﹣3,3),B2(3,3);第三個正方形的頂點A3(﹣6,6),B3(6,6)按順序取點A1,B2,A3,B4,A5,B6,則第12個點應(yīng)取點B12,其坐標為(  )

A. (12,12) B. (78,78) C. (66,66) D. (55,55)

查看答案和解析>>

同步練習冊答案