【題目】如圖,第一個(gè)正方形的頂點(diǎn)A1(﹣1,1),B1(1,1);第二個(gè)正方形的頂點(diǎn)A2(﹣3,3),B2(3,3);第三個(gè)正方形的頂點(diǎn)A3(﹣6,6),B3(6,6)按順序取點(diǎn)A1,B2,A3,B4,A5,B6…,則第12個(gè)點(diǎn)應(yīng)取點(diǎn)B12,其坐標(biāo)為( 。
A. (12,12) B. (78,78) C. (66,66) D. (55,55)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中的位置如圖所示.
在圖中畫(huà)出與關(guān)于y軸對(duì)稱的圖形,并寫(xiě)出頂點(diǎn)、、的坐標(biāo);
若將線段平移后得到線段,且,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了了解學(xué)生大課間活動(dòng)的跳繩情況,隨機(jī)抽取了50名學(xué)生每分鐘跳繩的次數(shù)進(jìn)行統(tǒng)計(jì),把統(tǒng)計(jì)結(jié)果繪制成如表和直方圖.
次數(shù) | 70≤x<90 | 90≤x<110 | 110≤x<130 | 130≤x<150 | 150≤x<170 |
人數(shù) | 8 | 23 | 16 | 2 | 1 |
根據(jù)所給信息,回答下列問(wèn)題:
(1)本次調(diào)查的樣本容量是;
(2)本次調(diào)查中每分鐘跳繩次數(shù)達(dá)到110次以上(含110次)的共有的共有人;
(3)根據(jù)上表的數(shù)據(jù)補(bǔ)全直方圖;
(4)如果跳繩次數(shù)達(dá)到130次以上的3人中有2名女生和一名男生,學(xué)校從這3人中抽取2名學(xué)生進(jìn)行經(jīng)驗(yàn)交流,求恰好抽中一男一女的概率(要求用列表法或樹(shù)狀圖寫(xiě)出分析過(guò)程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題8分) 甲、乙兩人進(jìn)行羽毛球比賽,羽毛球飛行的路線為拋物線的一部分. 如圖,甲 在O點(diǎn)正上方1m的P處發(fā)出一球,羽毛球飛行的高度y(m)與水平距離x(m)之間滿足函數(shù)表達(dá)式 ,已知點(diǎn)O與球網(wǎng)的水平距離為5m,球網(wǎng)的高度1.55m.
(1)當(dāng)a= 時(shí),①求h的值.②通過(guò)計(jì)算判斷此球能否過(guò)網(wǎng).
(2)若甲發(fā)球過(guò)網(wǎng)后,羽毛球飛行到與點(diǎn)O的水平距離為7m,離地面的高度為 m的Q處時(shí),乙扣球成功,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了鼓勵(lì)市民節(jié)約用水,自來(lái)水公司特制定了新的用水收費(fèi)標(biāo)準(zhǔn),每月用水量,x(噸)與應(yīng)付水費(fèi)(元)的函數(shù)關(guān)系如圖.
(1)求出當(dāng)月用水量不超過(guò)5噸時(shí),y與x之間的函數(shù)關(guān)系式;
(2)某居民某月用水量為8噸,求應(yīng)付的水費(fèi)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,邊長(zhǎng)為2的正三角形ABC中,P0是BC邊的中點(diǎn),一束光線自P0發(fā)出射到AC上的點(diǎn)P1后,依次反射到AB、BC上的點(diǎn)P2和P3(反射角等于入射角).
(1)若∠P2P3B=45°,CP1=;
(2)若 <BP3< ,則P1C長(zhǎng)的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】【問(wèn)題】如圖①,在△ABC中,BE平分∠ABC,CE平分∠ACB,若∠A=80°,則∠BEC=__ __;若∠A=n°,則∠BEC=__ _.
【探究】
(1)如圖②,在△ABC中,BD,BE三等分∠ABC,CD,CE三等分∠ACB.若∠A=n°,則∠BEC=____;
(2)如圖③,O是∠ABC與外角∠ACD的平分線BO和CO的交點(diǎn),試分析∠BOC和∠A有怎樣的關(guān)系?請(qǐng)說(shuō)明理由;
(3)如圖④,O是外角∠DBC與外角∠BCE的平分線BO和CO的交點(diǎn),則∠BOC與∠A有怎樣的關(guān)系?(只寫(xiě)結(jié)論,不需證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠C=90°,AC=6,AB=10,D為BC邊的中點(diǎn),以AD上一點(diǎn)O為圓心的⊙O和AB、BC均相切,則⊙O的半徑為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知相交直線AB和CD及另一直線MN,如果要在MN上找出與AB,CD距離相等的點(diǎn),則這樣的點(diǎn)至少有_____個(gè),最多有_____個(gè).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com