【題目】如圖,點P是矩形ABCD的邊上一動點,矩形兩邊長AB、BC長分別為15和20,那么P到矩形兩條對角線AC和BD的距離之和是( )
A.6B.12C.24D.不能確定
【答案】B
【解析】
由矩形ABCD可得:S△AOD=S矩形ABCD,又由AB=15,BC=20,可求得AC的長,則可求得OA與OD的長,又由S△AOD=S△APO+S△DPO=OAPE+ODPF,代入數(shù)值即可求得結(jié)果.
連接OP,如圖所示:
∵四邊形ABCD是矩形,
∴AC=BD,OA=OC=AC,OB=OD=BD,∠ABC=90°,
S△AOD=S矩形ABCD,
∴OA=OD=AC,
∵AB=15,BC=20,
∴AC===25,S△AOD=S矩形ABCD=×15×20=75,
∴OA=OD=,
∴S△AOD=S△APO+S△DPO=OAPE+ODPF=OA(PE+PF)=×(PE+PF)=75,
∴PE+PF=12.
∴點P到矩形的兩條對角線AC和BD的距離之和是12.
故選B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,是的中點,,動點從點出發(fā)沿向終點運動,動點從點出發(fā)沿折線向終點運動,兩點速度均為每秒1個單位,兩點同時出發(fā),當(dāng)其中一點到達終點后,運動停止,設(shè)運動時間為,的面積為(平方單位),則與之間的圖象大致為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,為外一點,將繞點按順時針方向旋轉(zhuǎn)得到,且點、、三點在同一直線上.
(1)(觀察猜想)
在圖①中, ;在圖②中, (用含的代數(shù)式表示)
(2)(類比探究)
如圖③,若,請補全圖形,再過點作于點,探究線段,,之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)(問題解決)
若,,,求點到的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=-x2+bx+c與一直線相交于A(-1,0),C(2,3)兩點,與y軸交于點N,其頂點為D.
(1)求拋物線及直線AC的函數(shù)關(guān)系式;
(2)設(shè)點M(3,m),求使MN+MD的值最小時m的值;
(3)若拋物線的對稱軸與直線AC相交于點B,E為直線AC上的任意一點,過點E作EF∥BD交拋物線于點F,以B,D,E,F為頂點的四邊形能否為平行四邊形?若能,求點E的坐標(biāo);若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點A按順時針方向旋轉(zhuǎn)得到的,連接BE、CF相交于點D.
(1)求證:BE=CF;
(2)當(dāng)四邊形ACDE為菱形時,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣x+2與反比例函數(shù)y=(k≠0)的圖象交于A(a,3),B(3,b)兩點,過點A作AC⊥x軸于點C,過點B作BD⊥x軸于點D.
(1)求a,b的值及反比例函數(shù)的解析式;
(2)若點P在直線y=﹣x+2上,且S△ACP=S△BDP,請求出此時點P的坐標(biāo);
(3)在x軸正半軸上是否存在點M,使得△MAB為等腰三角形?若存在,請直接寫出M點的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,△OAB三個頂點的坐標(biāo)分別為O(0,0),A(3,0),B(2,3).
(1)tan∠OAB= ;
(2)在第一象限內(nèi)畫出△OA'B',使△OA'B'與△OAB關(guān)于點O位似,相似比為2:1;
(3)在(2)的條件下,S△OAB:S四邊形AA′B′B= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AN是⊙O的直徑,四邊形ABMN是矩形,與圓相交于點E,AB=15,D是⊙O上的點,DC⊥BM,與BM交于點C,⊙O的半徑為R=30.
(1)求BE的長.
(2)若BC=15,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題背景:如圖1設(shè)P是等邊△ABC內(nèi)一點,PA=6,PB=8,PC=10,求∠APB的度數(shù).小君研究這個問題的思路是:將△ACP繞點A逆時針旋轉(zhuǎn)60°得到△ABP',易證:△APP'是等邊三角形,△PBP'是直角三角形,所以∠APB=∠APP'+∠BPP'=150°.
簡單應(yīng)用:(1)如圖2,在等腰直角△ABC中,∠ACB=90°.P為△ABC內(nèi)一點,且PA=5,PB=3,PC=2,則∠BPC= °.
(2)如圖3,在等邊△ABC中,P為△ABC內(nèi)一點,且PA=5,PB=12,∠APB=150°,則PC= .
拓展廷伸:(3)如圖4,∠ABC=∠ADC=90°,AB=BC.求證:BD=AD+DC.
(4)若圖4中的等腰直角△ABC與Rt△ADC在同側(cè)如圖5,若AD=2,DC=4,請直接寫出BD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com