【題目】如圖,在平面直角坐標(biāo)系中,直線軸、軸分別角與A、B兩點(diǎn),P、Q分別是線段OB、AB上的兩個(gè)動(dòng)點(diǎn),點(diǎn)P從O出發(fā)一每秒2個(gè)單位長(zhǎng)度的速度向終點(diǎn)B運(yùn)動(dòng),同時(shí)Q從B出發(fā),以每秒5個(gè)單位的速度向終點(diǎn)A運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí)整個(gè)運(yùn)動(dòng)結(jié)束,設(shè)運(yùn)動(dòng)時(shí)間為t秒。

(1)求出點(diǎn)Q的坐標(biāo)(用t的代數(shù)式表示)

(2)若C為OA的中點(diǎn),連接PQ、CQ,以PQ、CQ為鄰邊作PQCD.

①是否存在時(shí)間t,使得坐標(biāo)軸切好將PQCD的面積分為1:5的兩個(gè)部分,若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.

②直接寫出整個(gè)運(yùn)動(dòng)過(guò)程中PQCD對(duì)角線DQ的取值范圍.

【答案】(1);(2)①t=1或1.5;②4DQ4

【解析】

1)先利用勾股定理求出AB,再判斷出BEQ∽△BOA,得出比例式,代值求解即可得出結(jié)論;

2)①分兩種情況,利用同高的兩三角形的面積的比等于底的比,求解得出結(jié)論;

②利用兩點(diǎn)間距離公式,得出DQ2,再用函數(shù)的性質(zhì)即可得出結(jié)論.

解:(1)如圖1,

針對(duì)于直線y,

x0,則y6,

B06),

OB6,

y0,則0

x8,

A80),

OA8

根據(jù)勾股定理得,AB10,

由運(yùn)動(dòng)知,BQ5t,

過(guò)點(diǎn)QQEy軸于E,

QEAO,

∴△BEQ∽△BOA

,

,

BQ3t,EQ4t

OEOBBE63t,

Q4t63t);

2)連接DQCP,由運(yùn)動(dòng)知,OP2t,

P02t),

∵點(diǎn)COA的中點(diǎn),

C4,0),

∵四邊形CQPD是平行四邊形,

DQCP互相平分,

設(shè)Dm,n),

由(1)知,Q4t63t);

4t+m463t+n2t,

m44tn5t6,

D44t,5t6),

①Ⅰ、當(dāng)x軸將將PQCD的面積分為15的兩個(gè)部分時(shí),如圖2

PC是平行四邊形PQCD的對(duì)角線,

SPCQSPCD,

SCDFS四邊形CFPQ15,

SCDFSCPF12,

DFPF12,

PFDF21,

過(guò)點(diǎn)DDGy軸于G

OG65t,

DGFO

,

,

t1,【注:點(diǎn)D本身在y軸上,為了解決問(wèn)題,沒(méi)將點(diǎn)D放在y軸上】

Ⅱ、當(dāng)x軸將將PQCD的面積分為15的兩個(gè)部分時(shí),如圖3,

過(guò)點(diǎn)DDNx軸于N

同Ⅰ的方法得,t1.5,

即:坐標(biāo)軸剛好將PQCD的面積分為15的兩個(gè)部分時(shí),t1秒或1.5秒;

②由(1)知,Q4t,63t),

D44t5t6),

DQ2=(44t4t2+63t5t+62128t12+32

由運(yùn)動(dòng)知,0≤t≤2,

∴當(dāng)t1時(shí),DQ2最小32,

DQ最小4

當(dāng)t02時(shí),DQ2最大160,

DQ最大4,

4DQ≤4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)(﹣1,0),對(duì)稱軸l如圖所示,則下列結(jié)論:abc>0;a﹣b+c=0;2a+c<0;a+b<0,其中所有正確的結(jié)論是(

A.①③ B.②③ C.②④ D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某調(diào)查機(jī)構(gòu)將今年紹興市民最關(guān)注的熱點(diǎn)話題分為消費(fèi).教育.環(huán)保.反腐及其它共五類.根據(jù)最近一次隨機(jī)調(diào)查的相關(guān)數(shù)據(jù),繪制的統(tǒng)計(jì)圖表如下:

根據(jù)以上信息解答下列問(wèn)題:

1)本次共調(diào)查_________人,請(qǐng)?jiān)诖痤}卡上補(bǔ)全條形統(tǒng)計(jì)圖并標(biāo)出相應(yīng)數(shù)據(jù);

2)若紹興市約有500萬(wàn)人口,請(qǐng)你估計(jì)最關(guān)注教育問(wèn)題的人數(shù)約為多少萬(wàn)人?

3)在這次調(diào)查中,某單位共有甲...丁四人最關(guān)注教育問(wèn)題,現(xiàn)準(zhǔn)備從這四中隨機(jī)抽取兩人進(jìn)行座談,求抽取的兩人恰好是甲和乙的概率(畫樹(shù)狀圖或列表說(shuō)明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線ly=-2x-8分別與x軸,y軸相交于A,B兩點(diǎn),點(diǎn)P0k)是y軸的負(fù)半軸上的一個(gè)動(dòng)點(diǎn),以P為圓心,3為半徑作⊙P

1)若⊙Px軸有公共點(diǎn),則k的取值范圍是______

2)連接PA,若PA=PB,試判斷⊙Px軸的位置關(guān)系,并說(shuō)明理由;

3)當(dāng)⊙P與直線l相切時(shí),k的值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,有一個(gè)由六個(gè)邊長(zhǎng)為1的正方形組成的圖案,其中點(diǎn)A,B的坐標(biāo)分別為(3,5),(6,1).若過(guò)原點(diǎn)的直線l將這個(gè)圖案分成面積相等的兩部分,則直線l的函數(shù)解析式為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市某中學(xué)積極響應(yīng)創(chuàng)建全國(guó)文明城市活動(dòng),舉辦了以“校園文明”為主題的手抄報(bào)比賽.所有參賽作品均獲獎(jiǎng),獎(jiǎng)項(xiàng)分為一等獎(jiǎng)、二等獎(jiǎng)、三等獎(jiǎng)和優(yōu)秀獎(jiǎng),將獲獎(jiǎng)結(jié)果繪制成如右兩幅統(tǒng)計(jì)圖.請(qǐng)你根據(jù)圖中所給信息解答意)

1)等獎(jiǎng)所占的百分比是________;三等獎(jiǎng)的人數(shù)是________人;

2)據(jù)統(tǒng)計(jì),在獲得一等獎(jiǎng)的學(xué)生中,男生與女生的人數(shù)比為,學(xué)校計(jì)劃選派1名男生和1名女生參加市手抄報(bào)比賽,請(qǐng)求出所選2位同學(xué)恰是1名男生和1名女生的概率;

3)學(xué)校計(jì)劃從獲得二等獎(jiǎng)的同學(xué)中選取一部分人進(jìn)行集訓(xùn)使其提升為一等獎(jiǎng),要使獲得一等獎(jiǎng)的人數(shù)不少于二等獎(jiǎng)人數(shù)的2倍,那么至少選取多少人進(jìn)行集訓(xùn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了了解七年級(jí)1000名學(xué)生的身體健康情況,從該年級(jí)隨機(jī)抽取了若干名學(xué)生,將他們按體重(均為整數(shù),單位:kg)分成五組(A:39.5﹣46.5;B:46.5﹣53.5;C:53.5﹣60.5;D:60.5﹣67.5;E:67.5﹣74.5),并依據(jù)統(tǒng)計(jì)數(shù)據(jù)繪制了如下兩幅尚不完整的統(tǒng)計(jì)圖.

請(qǐng)解答下列問(wèn)題:

(1)這次隨機(jī)抽取了   名學(xué)生調(diào)查,并補(bǔ)全頻數(shù)分布直方圖;

(2)在抽取調(diào)查的若干名學(xué)生中體重在   組的人數(shù)最多,在扇形統(tǒng)計(jì)圖中D組的圓心角是   度;

(3)請(qǐng)你估計(jì)該校七年級(jí)體重超過(guò)60kg的學(xué)生大約有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(探索發(fā)現(xiàn))

如圖,是等邊三角形,點(diǎn)邊上一個(gè)動(dòng)點(diǎn),將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,連接.小明在探索這個(gè)問(wèn)題時(shí)發(fā)現(xiàn)四邊形是菱形.

小明是這樣想的:

1)請(qǐng)參考小明的思路寫出證明過(guò)程;

2)直接寫出線段,,之間的數(shù)量關(guān)系:______________;

(理解運(yùn)用)

如圖,在中,于點(diǎn).繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,延長(zhǎng),交于點(diǎn).

3)判斷四邊形的形狀,并說(shuō)明理由;

(拓展遷移)

4)在(3)的前提下,如圖,將沿折疊得到,連接,若,,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,,,以為直徑作半圓,圓心為.以點(diǎn)為圓心,為半徑作弧,過(guò)點(diǎn)的平行線交兩弧于點(diǎn),則陰影部分的面積是(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案