【題目】某調(diào)查機(jī)構(gòu)將今年紹興市民最關(guān)注的熱點(diǎn)話題分為消費(fèi).教育.環(huán)保.反腐及其它共五類(lèi).根據(jù)最近一次隨機(jī)調(diào)查的相關(guān)數(shù)據(jù),繪制的統(tǒng)計(jì)圖表如下:

根據(jù)以上信息解答下列問(wèn)題:

1)本次共調(diào)查_________人,請(qǐng)?jiān)诖痤}卡上補(bǔ)全條形統(tǒng)計(jì)圖并標(biāo)出相應(yīng)數(shù)據(jù);

2)若紹興市約有500萬(wàn)人口,請(qǐng)你估計(jì)最關(guān)注教育問(wèn)題的人數(shù)約為多少萬(wàn)人?

3)在這次調(diào)查中,某單位共有甲...丁四人最關(guān)注教育問(wèn)題,現(xiàn)準(zhǔn)備從這四中隨機(jī)抽取兩人進(jìn)行座談,求抽取的兩人恰好是甲和乙的概率(畫(huà)樹(shù)狀圖或列表說(shuō)明).

【答案】(1)1400人;(2125萬(wàn)人;(3.

【解析】

1)根據(jù)關(guān)注消費(fèi)的人數(shù)是420人,所占的比例式是30%,即可求得總?cè)藬?shù),然后利用總?cè)藬?shù)乘以關(guān)注教育的比例求得關(guān)注教育的人數(shù),進(jìn)而可補(bǔ)全條形統(tǒng)計(jì)圖并標(biāo)出相應(yīng)數(shù)據(jù);

2)利用總?cè)藬?shù)乘以對(duì)應(yīng)的百分比即可;

3)利用列舉法即可求解即可.

1)調(diào)查的總?cè)藬?shù)是:420÷30%=1400(人),

關(guān)注教育的人數(shù)是:1400×25%=350(人).

;

2500×=125(萬(wàn))

答:估計(jì)最關(guān)注教育問(wèn)題的人數(shù)約為125萬(wàn)人.

3)畫(huà)樹(shù)形圖得:

P(抽取的兩人恰好是甲和乙)=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AEF中,∠EAF=45°AGEF于點(diǎn)G,現(xiàn)將AEG沿AE折疊得到AEB,將AFG沿AF折疊得到AFD,延長(zhǎng)BEDF相交于點(diǎn)C

1)求證:四邊形ABCD是正方形;

2)連接BD分別交AE、AF于點(diǎn)M、N,將ABM繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),使ABAD重合,得到ADH,試判斷線段MN、ND、DH之間的數(shù)量關(guān)系,并說(shuō)明理由.

3)若EG=4GF=6,BM=3,求AG、MN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】工人師傅用一塊長(zhǎng)為2m,寬為1.2m的矩形鐵皮制作一個(gè)無(wú)蓋的長(zhǎng)方體容器,需要將四角各裁掉一個(gè)正方形.(厚度不計(jì))

(1)若長(zhǎng)方體底面面積為1.28m2,求裁掉的正方形邊長(zhǎng);

(2)若要求制作的長(zhǎng)方體的底面長(zhǎng)不大于底面寬的3倍,并將容器進(jìn)行防銹處理,側(cè)面每平方米的費(fèi)用為50元,底面每平方米的費(fèi)用為200元,裁掉的正方形邊長(zhǎng)多大時(shí),總費(fèi)用最低,最低為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,若干個(gè)全等的正五邊形排成環(huán)狀,圖中所示的是前3個(gè)正五邊形,要完成這一圓環(huán)還需正五邊形的個(gè)數(shù)為( 。

A. 10 B. 9 C. 8 D. 7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們定義:有一組鄰邊相等的凸四邊形叫做等鄰邊四邊形,在RtABC中,∠ACB=90°,AB=4,AC=2,DBC的中點(diǎn),點(diǎn)MAB邊上一點(diǎn),當(dāng)四邊形ACDM等鄰邊四邊形時(shí),BM的長(zhǎng)為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,為半圓內(nèi)一點(diǎn),為圓心,直徑長(zhǎng)為,,,將繞圓心逆時(shí)針旋轉(zhuǎn)至,點(diǎn)上,則邊掃過(guò)區(qū)域(圖中陰影部分)的面積為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形OABC的邊長(zhǎng)為6,以O為圓心,EF為直徑的半圓經(jīng)過(guò)點(diǎn)A,連接AE,CF相交于點(diǎn)P,將正方形OABCOAOF重合的位置開(kāi)始,繞著點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,交點(diǎn)P運(yùn)動(dòng)的路徑長(zhǎng)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線軸、軸分別角與A、B兩點(diǎn),P、Q分別是線段OB、AB上的兩個(gè)動(dòng)點(diǎn),點(diǎn)P從O出發(fā)一每秒2個(gè)單位長(zhǎng)度的速度向終點(diǎn)B運(yùn)動(dòng),同時(shí)Q從B出發(fā),以每秒5個(gè)單位的速度向終點(diǎn)A運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí)整個(gè)運(yùn)動(dòng)結(jié)束,設(shè)運(yùn)動(dòng)時(shí)間為t秒。

(1)求出點(diǎn)Q的坐標(biāo)(用t的代數(shù)式表示)

(2)若C為OA的中點(diǎn),連接PQ、CQ,以PQ、CQ為鄰邊作PQCD.

①是否存在時(shí)間t,使得坐標(biāo)軸切好將PQCD的面積分為1:5的兩個(gè)部分,若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.

②直接寫(xiě)出整個(gè)運(yùn)動(dòng)過(guò)程中PQCD對(duì)角線DQ的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:正方形與正方形共頂點(diǎn).

(1)探究:如圖,點(diǎn)在正方形的邊上,點(diǎn)在正方形的邊上,連接.求證:;

(2)拓展:將如圖中正方形繞點(diǎn)順時(shí)針?lè)较蛐D(zhuǎn),如圖所示,試探究線段之間的數(shù)量關(guān)系,并說(shuō)明理由;

(3)運(yùn)用:正方形在旋轉(zhuǎn)過(guò)程中,當(dāng),三點(diǎn)在一條直線上時(shí),如圖所示,延長(zhǎng)于點(diǎn).若,GH=2,求的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案