【題目】木工師傅在做完門框后,為防止門框變形常常需釘兩根斜拉的木棒,這樣做的數(shù)學(xué)原理是________。

【答案】三角形的穩(wěn)定性

【解析】木工師傅在做完門框后,為防止門框變形常常需釘兩根斜拉的木條,這樣做就構(gòu)成了三角形,利用的數(shù)學(xué)原理是三角形的穩(wěn)定性.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某中學(xué)決定在八年級(jí)陽光體育“大課間”活動(dòng)中開設(shè)A:實(shí)心球,B:立定跳遠(yuǎn),C:跳繩,D:跑步四種活動(dòng)項(xiàng)目.為了了解學(xué)生對(duì)四種項(xiàng)目的喜歡情況,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如圖①②的統(tǒng)計(jì)圖.請(qǐng)結(jié)合圖中的信息解答下列問題:

(1)在這項(xiàng)調(diào)查中,共調(diào)查了多少名學(xué)生?

(2)將兩個(gè)統(tǒng)計(jì)圖補(bǔ)充完整;

(3)若調(diào)查到喜歡“立定跳遠(yuǎn)”的5名學(xué)生中有3名男生,2名女生.現(xiàn)從這5名學(xué)生中任意抽取2名學(xué)生.請(qǐng)用畫樹狀圖或列表的方法,求出剛好抽到同性別學(xué)生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)規(guī)定學(xué)生的學(xué)期體育成績(jī)滿分為100分,其中課外體育占20%,期中考試成績(jī)占30%,期末考試成績(jī)占50%.小彤的三項(xiàng)成績(jī)(百分制)次為95,90,88,則小彤這學(xué)期的體育成績(jī)?yōu)椋?/span>
A.89
B.90
C.92
D.93

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在學(xué)校組織的社會(huì)實(shí)踐活動(dòng)中,甲、乙兩人參加了射擊比賽,每人射擊七次,命中的環(huán)數(shù)如表:

序號(hào)

甲命中的環(huán)數(shù)(環(huán))

7

8

8

6

9

8

10

乙命中的環(huán)數(shù)(環(huán))

5

10

6

7

8

10

10

根據(jù)以上信息,解決以下問題:
(1)寫出甲、乙兩人命中環(huán)數(shù)的眾數(shù);
(2)已知通過計(jì)算器求得 =8, ≈1.43,試比較甲、乙兩人誰的成績(jī)更穩(wěn)定?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)三角形中直角的個(gè)數(shù)最多有(  )

A. 3 B. 1 C. 2 D. 0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y=kx+b經(jīng)過點(diǎn)(-1,1)和點(diǎn)(2,7).
(1)求這個(gè)一次函數(shù)的解析表達(dá)式.
(2)將所得函數(shù)圖象平移,使它經(jīng)過點(diǎn)(2,-1),求平移后直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形APBC是圓內(nèi)接四邊形,∠APB=120°,PC平分∠APB,AP,CB的延長(zhǎng)線相交于點(diǎn)D.

(1)求證:△ABC是等邊三角形;

(2)若∠PAC=90°,AB=2

①求PD的長(zhǎng).

②圖中弧BP和線段DP、BD組成的圖形面積為  (結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,根據(jù)圖象回答下列問題:

1a   0;

2b   0

3b2﹣4ac   0;

4y0時(shí),x的取值范圍是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在平面直角坐標(biāo)系中,拋物線)交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,且對(duì)稱軸為直線x=―2 .

(1)求該拋物線的解析式及頂點(diǎn)D的坐標(biāo);

(2)若點(diǎn)P(0,t)是y軸上的一個(gè)動(dòng)點(diǎn),請(qǐng)進(jìn)行如下探究:

探究一:如圖1,設(shè)△PAD的面積為S,令Wt·S,當(dāng)0<t<4時(shí),W是否有最大值?如果有,求出W的最大值和此時(shí)t的值;如果沒有,說明理由;

探究二:如圖2,是否存在以P、A、D為頂點(diǎn)的三角形與RtAOC相似?如果存在,求點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說明理由.

圖1 圖2

查看答案和解析>>

同步練習(xí)冊(cè)答案