【題目】如圖顯示了用計算機(jī)模擬隨機(jī)拋擲一枚硬幣的某次實驗的結(jié)果

下面有三個推斷:

①當(dāng)拋擲次數(shù)是100時,計算機(jī)記錄正面向上的次數(shù)是47,所以正面向上的概率是0.47

②隨著試驗次數(shù)的增加,正面向上的頻率總在0.5附近擺動,顯示出一定的穩(wěn)定性,可以估計正面向上的概率是0.5

③若再次用計算機(jī)模擬此實驗,則當(dāng)拋擲次數(shù)為150時,正面向上的頻率一定是0.45

其中合理的是(  )

A.B.C.①②D.①③

【答案】B

【解析】

隨著試驗次數(shù)的增加,“正面向上”的頻率總在0.5附近擺動,顯示出一定的穩(wěn)定性,可以估計“正面向上”的概率是0.5,據(jù)此進(jìn)行判斷即可.

解:①當(dāng)拋擲次數(shù)是100時,計算機(jī)記錄“正面向上”的次數(shù)是47,“正面向上”的概率不一定是0.47,故錯誤;

②隨著試驗次數(shù)的增加,“正面向上”的頻率總在0.5附近擺動,顯示出一定的穩(wěn)定性,可以估計“正面向上”的概率是0.5,故正確;

③若再次用計算機(jī)模擬此實驗,則當(dāng)拋擲次數(shù)為150時,“正面向上”的頻率不一定是0.45,故錯誤.

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AC是⊙O的切線,切點為ABC交⊙O于點D,點EAC的中點.

1)試判斷直線DE與⊙O的位置關(guān)系,并說明理由;

2)若⊙O的半徑為2,∠B50°AC6,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A、B、C、D均在⊙O上,FB與⊙O相切于點B,ABCF交于點GOACF于點E,ACBF

(1)求證:FG=FB

(2)若tan∠F=,⊙O的半徑為4,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,長方形ABCD(每個內(nèi)角都是90°)的頂點的坐標(biāo)分別是A0,m),Bn,0),(mn0),點EAD上,AEAB,點Fy軸上,OFOB,BF的延長線與DA的延長線交于點M,EFAB交于點N

1)試求點E的坐標(biāo)(用含mn的式子表示);

2)求證:AMAN

3)若ABCD12cm,BC20cm,動點PB出發(fā),以2cm/s的速度沿BCC運動的同時,動點QC出發(fā),以vcm/s的速度沿CDD運動,是否存在這樣的v值,使得△ABP與△PQC全等?若存在,請求出v值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了計算湖中小島上涼亭P到岸邊公路l的距離,某數(shù)學(xué)興趣小組在公路l上的點A處,測得涼亭P在北偏東60°的方向上;從A處向正東方向行走200米,到達(dá)公路l上的點B處,再次測得涼亭P在北偏東45°的方向上,如圖所示.求涼亭P到公路l的距離.(結(jié)果保留整數(shù),參考數(shù)據(jù):≈1.414,≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】連接著漢口集家咀的江漢三橋(晴川橋),是一座下承式鋼管混凝土系桿拱橋.它猶如一道美麗的彩虹跨越漢江,是江城武漢的一道靚麗景觀.橋的拱肋ACB視為拋物線的一部分,橋面(視為水平的)與拱肋用垂直于橋面的系桿連接,相鄰系桿之間的間距均為5米(不考慮系桿的粗細(xì)),拱肋的跨度AB280米,距離拱肋的右端70米處的系桿EF的長度為42米.以AB所在直線為x軸,拋物線的對稱軸為y軸建立如圖②所示的平面直角坐標(biāo)系.

1)求拋物線的解析式;

2)正中間系桿OC的長度是多少米?是否存在一根系桿的長度恰好是OC長度的一半?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:AB為半圓的直徑,AB4,COA中點,D為半圓上一點,連CD,E的中點,且CDBE,則CD的長為(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線x軸和y軸分別交于點A和點B,拋物線的頂點M在直線AB上,且拋物線與直線AB的另一個交點為N

1)如圖,當(dāng)點M與點A重合時,求:

①拋物線的解析式;

②點N的坐標(biāo)和線段MN的長;

2)拋物線在直線AB上平移,是否存在點M,使得OMNAOB相似?若存在,直接寫出點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:如圖(1),,,,四點分別在四邊形的四條邊上,若四邊形為菱形,我們稱菱形為四邊形的內(nèi)接菱形.

動手操作:

1)如圖2,網(wǎng)格中的每個小四邊形都為正方形,每個小四邊形的頂點叫做格點,由個小正方形組成一個大正方形,點、在格點上,請在圖(2)中畫出四邊形的內(nèi)接菱形

特例探索:

2)如圖3,矩形,,點在線段上且,四邊形是矩形的內(nèi)接菱形,求的長度;

拓展應(yīng)用:

3)如圖4,平行四邊形,,點在線段上且,

請你在圖4中畫出平行四邊形的內(nèi)接菱形,點在邊上;

的條件下,當(dāng)的長最短時,的長為__________

查看答案和解析>>

同步練習(xí)冊答案