【題目】我們把形如x2=a(其中a是常數(shù)且a≥0)這樣的方程叫做x的完全平方方程.

x2=9,(3x﹣2)2=25,都是完全平方方程.

那么如何求解完全平方方程呢?

探究思路:

我們可以利用乘方運(yùn)算把二次方程轉(zhuǎn)化為一次方程進(jìn)行求解.

如:解完全平方方程x2=9的思路是:由(+3)2=9,(﹣3)2=9可得x1=3,x2=﹣3.

解決問(wèn)題:

(1)解方程:(3x﹣2)2=25.

解題思路:我們只要把 3x﹣2 看成一個(gè)整體就可以利用乘方運(yùn)算進(jìn)一步求解方程了.

解:根據(jù)乘方運(yùn)算,得3x﹣2=5 3x﹣2=   

分別解這兩個(gè)一元一次方程,得x1=,x2=﹣1.

(2)解方程

【答案】﹣5

【解析】

根據(jù)題意給出的思路即可求出答案.

(1)3x﹣2=﹣5,

(2)根據(jù)乘方運(yùn)算,

x1=,x2=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,直徑,半徑,點(diǎn)上,且點(diǎn)與點(diǎn)在直徑的兩側(cè),連結(jié).若,則的度數(shù)是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, AB∥CD, AC∥BD, ADBC交于O, AE⊥BCE, DF⊥BCF, 那么圖中全等的三角形有 ( )

A.5對(duì)B.6對(duì)C.7對(duì)D.8對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,EAD的中點(diǎn),將ABE沿BE折疊 得到GBE,且點(diǎn)G在矩形ABCD內(nèi)部.將BG延長(zhǎng)交DC 于點(diǎn)F,若DC=nDF,則 =______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知正方形的面積為,點(diǎn)在函數(shù)的圖象上,點(diǎn)是函數(shù)的圖象上動(dòng)點(diǎn),過(guò)點(diǎn)分別作軸、軸的垂線,垂足分別為、,若設(shè)矩形和正方形不重合的兩部分的面積和為

點(diǎn)坐標(biāo)和的值;

寫(xiě)出關(guān)于的函數(shù)關(guān)系和的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等邊ABC 中,點(diǎn) D 是線段 BC 上一點(diǎn).作射線 AD ,點(diǎn) B 關(guān)于射線 AD 的對(duì)稱點(diǎn)為 E .連接 EC 并延長(zhǎng),交射線 AD 于點(diǎn) F .

1)補(bǔ)全圖形;(2)求AFE 的度數(shù);(3)用等式表示線段 AF 、CF 、 EF 之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)O在線段AB上,(不與端點(diǎn)A、B重合),以點(diǎn)O為圓心,OA的長(zhǎng)為半徑畫(huà)弧,線段BP與這條弧相切與點(diǎn)P,直線CD垂直平分PB,交PB于點(diǎn)C,交AB于點(diǎn)D,在射線DC上截取DE,使DE=DB。已知AB=6,設(shè)OA=r。

(1)求證:OPED;

(2)當(dāng)∠ABP=30°時(shí),求扇形AOP的面積,并證明四邊形PDBE是菱形;

(3)過(guò)點(diǎn)OOFDE于點(diǎn)F,如圖所示,線段EF的長(zhǎng)度是否隨r的變化而變化?若不變,直接寫(xiě)出EF的值;若變化,直接寫(xiě)出EFr的關(guān)系。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)(1,3)在函數(shù)的圖象上,正方形的邊軸上,點(diǎn)是對(duì)角線的中點(diǎn),函數(shù)的圖象又經(jīng)過(guò)、兩點(diǎn),則點(diǎn)的橫坐標(biāo)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC、CDE都是等腰三角形,且CACB,CDCE,ACB=∠DCEα,AD,BE相交于點(diǎn)O,點(diǎn)M,N分別是線段AD,BE的中點(diǎn),以下4個(gè)結(jié)論:ADBE;②∠DOB180°α;CMN是等邊三角形;④連OC,OC平分∠AOE.正確的是(

A.①②③B.①②④C.①③④D.①②③④

查看答案和解析>>

同步練習(xí)冊(cè)答案