【題目】已知,直徑,半徑,點(diǎn)上,且點(diǎn)與點(diǎn)在直徑的兩側(cè),連結(jié),.若,則的度數(shù)是________

【答案】

【解析】

按點(diǎn)D在直線OC左側(cè)、右側(cè)兩種情形分類討論,利用圓周角定理求解.

由題意,
①當(dāng)點(diǎn)D在直線OC左側(cè)時(shí),如答圖1所示.
連接OD,則∠1=∠2=22°,
∴∠COD=180°-∠1-∠2=136°,
∴∠AOD=∠COD-∠AOC=136°-90°=46°,
∴∠ABD=∠AOD=23°;
②當(dāng)點(diǎn)D在直線OC右側(cè)時(shí),如答圖2所示.
連接OD,則∠1=∠2=22°;
并延長CO,則∠3=∠1+∠2=44°.
∴∠AOD=90°+∠3=90°+44°=134°,
∴∠ABD=∠AOD=67°.
綜上所述,∠ABD的度數(shù)是23°或67°.


故答案是:23°或67°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E是正方形ABCD的邊CD上一點(diǎn),以A為圓心,AB為半徑的弧與BE交于點(diǎn)F,則∠EFD=_____°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC三頂點(diǎn)A(﹣50)、B(﹣2,4)、C(﹣1,﹣2),A'B'C'ABC關(guān)于y軸對(duì)稱.

1)直接寫出A'B'、C'的坐標(biāo);

2)畫出A'B'C';

3)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的半徑為,弦、的長度分別為,則弦、所夾的銳角________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,C=90°,AC=4,BC=3,O是ABC的內(nèi)心,以O(shè)為圓心,r為半徑的圓與線段AB有交點(diǎn),則r的取值范圍是( )

A.r≥1 B.1≤r≤ C.1≤r≤ D.1≤r≤4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知的直徑,的度數(shù)為,點(diǎn)的中點(diǎn),在直徑上作出點(diǎn),使的值最小,則的最小值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果關(guān)于x的一元二次方程ax2+bx+c=0有兩個(gè)實(shí)數(shù)根,且其中一個(gè)根為另一個(gè)根的三倍,則稱這樣的方程為“3倍根方程,以下說法不正確的是(  )

A. 方程x2﹣4x+3=03倍根方程

B. 若關(guān)于x的方程(x﹣3)(mx+n)=03倍根方程,則m+n=0

C. m+n=0m0,則關(guān)于x的方程(x﹣3)(mx+n)=03倍根方程

D. 3m+n=0m0,則關(guān)于x的方程x2+(m﹣n)x﹣mn=03倍根方程

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD中,點(diǎn)E在邊AB上,連結(jié)DE,CE.

(1)若∠A=B=DEC=50°,找出圖中的相似三角形,并說明理由;

(2)若四邊形ABCD為矩形,AB=5,BC=2,且圖中的三個(gè)三角形都相似,求AE的長.

(3)若∠A=B=90°,ADBC,圖中的三個(gè)三角形都相似,請(qǐng)判斷AEBE的數(shù)量關(guān)系并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們把形如x2=a(其中a是常數(shù)且a≥0)這樣的方程叫做x的完全平方方程.

x2=9,(3x﹣2)2=25,都是完全平方方程.

那么如何求解完全平方方程呢?

探究思路:

我們可以利用乘方運(yùn)算把二次方程轉(zhuǎn)化為一次方程進(jìn)行求解.

如:解完全平方方程x2=9的思路是:由(+3)2=9,(﹣3)2=9可得x1=3,x2=﹣3.

解決問題:

(1)解方程:(3x﹣2)2=25.

解題思路:我們只要把 3x﹣2 看成一個(gè)整體就可以利用乘方運(yùn)算進(jìn)一步求解方程了.

解:根據(jù)乘方運(yùn)算,得3x﹣2=5 3x﹣2=   

分別解這兩個(gè)一元一次方程,得x1=,x2=﹣1.

(2)解方程

查看答案和解析>>

同步練習(xí)冊(cè)答案