【題目】如圖,在等邊ABC 中,點(diǎn) D 是線段 BC 上一點(diǎn).作射線 AD ,點(diǎn) B 關(guān)于射線 AD 的對(duì)稱點(diǎn)為 E .連接 EC 并延長(zhǎng),交射線 AD 于點(diǎn) F .

1)補(bǔ)全圖形;(2)求AFE 的度數(shù);(3)用等式表示線段 AF 、CF EF 之間的數(shù)量關(guān)系,并證明.

【答案】1)答案見(jiàn)解析;(260°;(3AF=EF+CF,理由見(jiàn)解析

【解析】

1)根據(jù)題意補(bǔ)全圖形即可;

2)連接AE,根據(jù)對(duì)稱性得到AE AB , FAB FAE ,設(shè)FAC ,則FAB FAE 60 ,EAC 60 60 2,再根據(jù)AE AC 得到AFE 180 FAE FEA 60;

3)作FCG 60 AD 于點(diǎn) G,連接 BF,根據(jù)等邊三角形的性質(zhì)得到ACG 60 GCD BCF,再證明ACG ≌△ BCF,得到AG BF,再根據(jù)對(duì)稱性得到BF EF 再得到AF EF CF

1)補(bǔ)全圖形:

2)連接AE

∵△ABC 是等邊三角形,

AB AC BC , BAC BCA 60.

點(diǎn)B關(guān)于射線 AD 的對(duì)稱點(diǎn)為 E ,

AE AB ,FAB FAE .

設(shè)FAC ,則FAB FAE 60

EAC 60 60 2, AE AC .

AFE 180 FAE FEA 60

3 AF EF CF

證明:如圖 3,作FCG 60 AD 于點(diǎn) G,連接 BF.

∴△ FCG 是等邊三角形.

GF CF GC . CGF GFC FCG 60 .

ACG 60 GCD BCF

ACG BCF 中,

∴△ ACG ≌△ BCF .

AG BF .

點(diǎn) B 關(guān)于射線 AD 的對(duì)稱點(diǎn)為 E ,

BF EF .

AF AG GF .

AF EF CF

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知的直徑,的度數(shù)為,點(diǎn)的中點(diǎn),在直徑上作出點(diǎn),使的值最小,則的最小值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用適當(dāng)方法解下列方程

(1);

(2)

(3)

(4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABCBC邊上的垂直平分線DEBAC得平分線交于點(diǎn)E,EFABAB的延長(zhǎng)線于點(diǎn)F,EGAC交于點(diǎn)G

求證:(1BF=CG;(2AF=AB+AC).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們把形如x2=a(其中a是常數(shù)且a≥0)這樣的方程叫做x的完全平方方程.

x2=9,(3x﹣2)2=25,都是完全平方方程.

那么如何求解完全平方方程呢?

探究思路:

我們可以利用乘方運(yùn)算把二次方程轉(zhuǎn)化為一次方程進(jìn)行求解.

如:解完全平方方程x2=9的思路是:由(+3)2=9,(﹣3)2=9可得x1=3,x2=﹣3.

解決問(wèn)題:

(1)解方程:(3x﹣2)2=25.

解題思路:我們只要把 3x﹣2 看成一個(gè)整體就可以利用乘方運(yùn)算進(jìn)一步求解方程了.

解:根據(jù)乘方運(yùn)算,得3x﹣2=5 3x﹣2=   

分別解這兩個(gè)一元一次方程,得x1=,x2=﹣1.

(2)解方程

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P,MN分別在等邊△ABC的各邊上,且MPAB于點(diǎn)P,MNBC于點(diǎn)MPNAC于點(diǎn)N

1)求證:△PMN是等邊三角形;

2)若AB18cm,求CM的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AD、AE分別是ABC的中線、高,且AB=4cm,AC=3cm,請(qǐng)解答下列問(wèn)題:

(1)ABDACD面積大小有怎樣的關(guān)系?并說(shuō)明理由.

(2)ABDACD周長(zhǎng)之差是多少?

(3)當(dāng)AE=2.5cm BC=6cm時(shí),試求ABD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=6,BC=8,沿直線MN對(duì)折,使A、C重合,直線MN交AC于O.

(1)求證:COM∽△CBA;

(2)求線段OM的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,我們把拋物線y=﹣x(x﹣3)(0≤x≤3)記為C1,它與x軸交于點(diǎn)O,A1將C1繞點(diǎn)A1旋轉(zhuǎn)180°得C2,交x 軸于另一點(diǎn)A2;將C2繞點(diǎn)A2旋轉(zhuǎn)180°得C3,交x 軸于另一點(diǎn)A3;…;如此進(jìn)行下去,直至得C2016.①C1的對(duì)稱軸方程是_____;②若點(diǎn)P(6047,m)在拋物線C2016上,則m=_____

查看答案和解析>>

同步練習(xí)冊(cè)答案