【題目】如圖, AB∥CD, AC∥BD, AD與BC交于O, AE⊥BC于E, DF⊥BC于F, 那么圖中全等的三角形有 ( )
A.5對B.6對C.7對D.8對
【答案】C
【解析】
解:∵AB∥CD,AC∥BD,
∴∠ABC=∠DCB,∠ACB=∠DBC.
∵BC=CB,
∴△CAB≌△CDB,
∴AB=CD,AC=BD.
∵AB∥CD,AC∥BD,
∴∠BAO=∠CDO,∠OBA=∠OCD,∠OBD=∠OCA,∠OAC=∠ODB.
∴△AOB≌△COD,△AOC≌△BOD.
∴OA=OD,OC=OB.
∵AE⊥BC,DF⊥BC,∠AOE=∠DOF,
∴△AOE≌△DOF.
∴OE=OF.
∴CE=BF.
∵AE=DF,AC=BD,
∴△AEC≌△BFD.
∵AE=DF,AB=CD,BE=CF,
∴△AEB≌△DFC.
還有△ACD≌△DBA.
故全等三角形有7對,選:C.
科目:初中數(shù)學 來源: 題型:
【題目】為響應“學雷鋒、樹新風、做文明中學生”號召,某校開展了志愿者服務活動,活動項目有“戒毒宣傳”、“文明交通崗”、“關愛老人”、“義務植樹”、“社區(qū)服務”等五項,活動期間,隨機抽取了部分學生對志愿者服務情況進行調查,結果發(fā)現(xiàn),被調查的每名學生都參與了活動,最少的參與了1項,最多的參與了5項,根據(jù)調查結果繪制了如圖所示不完整的折線統(tǒng)計圖和扇形統(tǒng)計圖.
(1)被隨機抽取的學生共有多少名?
(2)在扇形統(tǒng)計圖中,求活動數(shù)為3項的學生所對應的扇形圓心角的度數(shù),并補全折線統(tǒng)計圖;
(3)該校共有學生2000人,估計其中參與了4項或5項活動的學生共有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是⊙O上一點,D在AB的延長線上,且∠BCD=∠A.
(1)求證:CD是⊙O的切線;
(2)若⊙O的半徑為3,CD=4,求BD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們知道,兩邊及其中一邊的對角分別對應相等的兩個三角形不一定全等.那么在什么情況下,它們會全等?
(1)閱讀與證明:
對于這兩個三角形均為直角三角形,顯然它們全等.
對于這兩個三角形均為鈍角三角形,可證它們全等(證明略).
對于這兩個三角形均為銳角三角形,它們也全等,可證明如下:
如圖所示,、均為銳角三角形,,,.
求證:.
證明:分別過點B,作于點D,于點.
∴.
在和,
∴.
.
____________________________________________________________.
(請你將上述證明過程補充完整)
(2)歸納與敘述:由(1)可得到一個正確結論,請你寫出這個結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知中,厘米,厘米,點為的中點.
(1)如果點P在線段BC上以3厘米/秒的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動.
①若點Q的運動速度與點P的運動速度相等,經過1秒后,與是否全等,請說明理由;
②若點Q的運動速度與點P的運動速度不相等, 與是否可能全等?若能,求出全等時點Q的運動速度和時間;若不能,請說明理由.
(2)若點Q以②中的運動速度從點C出發(fā),點P以原來的運動速度從點B同時出發(fā),都逆時針沿三邊運動,求經過多長時間點P與點Q第一次在的哪條邊上相遇?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:在中,,,對角線,相交于點.點是線段上一動點(不與、重合),連接,以為邊在的右側作,且,.
(1)如圖①,若點落在線段上,則線段與線段的數(shù)量關系是______;
(2)如圖②,若點不在線段上,(1)中的結論是否成立?若成立,請證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,某公司員工住在三個住宅區(qū),已知區(qū)有2人,區(qū)有7人,區(qū)有12人,三個住宅區(qū)在同一條直線上,且,是的中點.為方便員工,公司計劃開設通勤車免費接送員工上下班,但因為停車緊張,在四處只能設一個通勤車停靠點,為使所有員工步行到?奎c的路程之和最小,那么?空緫O在( )
A.處B.處C.處D.處
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com