【題目】下列說法中,正確的有( 。

(1)、的平方根是±5;(2)、五邊形的內(nèi)角和是540°;(3)、拋物線y=x2+2x+4x軸無交點;(4)、等腰三角形兩邊長為6cm4cm,則它的周長是16cm.

A. 2 B. 3 C. 4 D. 5

【答案】A

【解析】分析:(1)=5,的平方根即是5的平方根;(2)n邊形內(nèi)角和公式是(n-2)180°;(3)判斷22-4×1×4的符號;(4)分6cm為等腰三角形的底和腰兩種情況討論.

詳解:(1)因為=5,5的平方根是±(1)錯誤;

(2)五邊形內(nèi)角和是(5-2)×180°=540°,則(2)正確;

(3)拋物線yx22x4x軸交點的橫坐標(biāo)即是x22x40的根,

因為22-4×1×4<0,所以拋物線yx22x4x軸無交點,則(3)正確;

(4)當(dāng)?shù)妊切蔚难L為6cm時,三邊長為6,6,4,周長為16cm

當(dāng)?shù)妊切蔚难L為4cm時,三邊長為6,4,4,周長為14cm,

則(4)錯誤.

故選A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知某服裝廠現(xiàn)有甲種布料50米,乙種布料27米,現(xiàn)計劃用這兩種布料生產(chǎn)A,B兩種型號的時裝共60套. 已知做一套A型號的時裝需用甲種布料1米,乙種布料0.2米,可獲利30元;做一套B型號的時裝需用甲種布料0.5米,乙種布料0.8米,可獲利20元. 設(shè)生產(chǎn)A型號的時裝套數(shù)為x,用這批布料生產(chǎn)兩種型號的時裝所獲得的總利潤為y元.

(1)求y(元)與x(套)之間的函數(shù)表達(dá)式,并求出自變量的取值范圍.

(2)當(dāng)生產(chǎn)A型號的時裝多少套時,能使該廠所獲利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:數(shù)a,b,c 在數(shù)軸上的對應(yīng)點如下圖所示,

(1)在數(shù)軸上表示﹣a;

(2)比較大。ㄌ睢埃肌被颉埃尽被颉埃健保篴+b  0,﹣3c  0,c﹣a  0;

(3)化簡|a+b|﹣|﹣3c|﹣|c﹣a|.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)《佛山﹣環(huán)西拓規(guī)劃方案》,三水區(qū)域內(nèi)改造提升的道路約37公里,屆時,沿線將串聯(lián)起獅山、樂平、三水新城、水都基地、白坭等城鎮(zhèn)節(jié)點,在這項工程中,有一段4000米的路段由甲、乙兩個工程隊負(fù)責(zé)完成.已知甲工程隊每天完成的工作量是乙工程隊每天完成的工作量的2倍,且甲工程隊單獨完成此項工程比乙工程隊單獨完成此項工程少用20天.求甲、乙兩個工程隊平均每天各完成多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場準(zhǔn)備進(jìn)一批兩種不同型號的衣服,已知購進(jìn)A種型號衣服9件,B種型號衣服10件,則共需1810元;若購進(jìn)A種型號衣服12件,B種型號衣服8件,共需1880元;已知銷售一件A型號衣服可獲利18元,銷售一件B型號衣服可獲利30元,要使在這次銷售中獲利不少于699元,且A型號衣服不多于28件.

(1)求A、B型號衣服進(jìn)價各是多少元?

(2)若已知購進(jìn)A型號衣服是B型號衣服的2倍還多4件,則商店在這次進(jìn)貨中可有幾種方案并簡述購貨方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩城市之間開通了動車組高速列車.已知每隔2h有一列速度相同的動車組列車從甲城開往乙城.如圖,OA是第一列動車組列車離開甲城的路程s(km)與運行時間t(h)的函數(shù)圖象,BC是一列從乙城開往甲城的普通快車距甲城的路程s(km)與運行時間t(h)的函數(shù)圖象.請根據(jù)圖中的信息,解答下列問題:

(1)從圖象看,普通快車發(fā)車時間比第一列動車組列車發(fā)車時間 1h(填),點B的縱坐標(biāo)600的實際意義是

(2)請直接在圖中畫出第二列動車組列車離開甲城的路程s(km)與時間t(h)的函數(shù)圖象;

(3)若普通快車的速度為100km/h,

求第二列動車組列車出發(fā)多長時間后與普通快車相遇?

請直接寫出這列普通快車在行駛途中與迎面而來的相鄰兩列動車組列車相遇的時間間隔.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在RtABC中,ACB=90°,BE平分ABC,D是邊AB上一點,以BD為直徑的O經(jīng)過點E,且交BC于點F.

(1)求證:AC是O的切線;

(2)若BF=6,O的半徑為5,求CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)圖象的一部分,圖象過點A(-3,0),對稱軸為直線x=1,給出四個結(jié)論:①c0;②若點B(-1.5,y1)C(-2.5,y2)為函數(shù)圖象上的兩點,則y1y2;2ab=0; 0.其中正確結(jié)論的個數(shù)是(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ABC=90AB=BC=,將ABC繞點A逆時針旋轉(zhuǎn)60,得到ADE,連接BE,求BE的長為(

A. 2+B. 2C. 2+2D. 2

查看答案和解析>>

同步練習(xí)冊答案