【題目】某商場準(zhǔn)備進一批兩種不同型號的衣服,已知購進A種型號衣服9件,B種型號衣服10件,則共需1810元;若購進A種型號衣服12件,B種型號衣服8件,共需1880元;已知銷售一件A型號衣服可獲利18元,銷售一件B型號衣服可獲利30元,要使在這次銷售中獲利不少于699元,且A型號衣服不多于28件.
(1)求A、B型號衣服進價各是多少元?
(2)若已知購進A型號衣服是B型號衣服的2倍還多4件,則商店在這次進貨中可有幾種方案并簡述購貨方案.
【答案】(1)A種型號的衣服每件90元,B種型號的衣服100元;(2)有三種進貨方案,具體見解析.
【解析】試題分析:(1)等量關(guān)系為:A種型號衣服9件×進價+B種型號衣服10件×進價=1810,A種型號衣服12件×進價+B種型號衣服8件×進價=1880;
(2)關(guān)鍵描述語是:獲利不少于699元,且A型號衣服不多于28件.關(guān)系式為:18×A型件數(shù)+30×B型件數(shù)≥699,A型號衣服件數(shù)≤28.
試題解析:(1)設(shè)A種型號的衣服每件x元,B種型號的衣服y元,
則:,
解之得.
答:A種型號的衣服每件90元,B種型號的衣服100元;
(2)設(shè)B型號衣服購進m件,則A型號衣服購進(2m+4)件,
可得:,
解之得192m12,
∵m為正整數(shù),
∴m=10、11、12,2m+4=24、26、28.
答:有三種進貨方案:
(1)B型號衣服購買10件,A型號衣服購進24件;
(2)B型號衣服購買11件,A型號衣服購進26件;
(3)B型號衣服購買12件,A型號衣服購進28件。
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)軸上點A表示的數(shù)為a,點B為原點,點C表示的數(shù)為c,且已知a,c滿足|a+1|+(c﹣7)2=0.
(1)a= c= ;
(2)若AC的中點為M,則點M表示的數(shù)為 ;
(3)若A,C兩點同時以每秒1個單位長度的速度向左運動,求第幾秒時,恰好有BA=BC?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】質(zhì)量檢測部門對甲、乙、丙三家公司銷售產(chǎn)品的使用壽命進行了跟蹤調(diào)查,統(tǒng)計結(jié)果如下(單位:年):
甲公司:4,5,5,5,5,7,9,12,13,15;
乙公司:6,6,8,8,8,9,10,12,14,15;
丙公司:4,4,4,6,7,9,13,15,16,16.
請回答下列問題:
(1)填空:
平均數(shù)(單位:年) | 眾數(shù)(單位:年) | 中位數(shù)(單位:年) | |
甲 | ________ | 5 | ________ |
乙 | 9.6 | ________ | 8.5 |
丙 | 9.4 | 4 | ________ |
(2)如果你是顧客,你將選購哪家公司銷售的產(chǎn)品,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AD平分∠CAB交BC于點D,CD=1,延長AC到E,使AE=AB,連接DE,BE.
(1)求BD的長;
(2)求證:DA=DE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個長方體紙盒的平面展開圖,已知紙盒中相對兩個面上的數(shù)互為相反數(shù).
(1)填空:a= ,b= ,c= ;
(2)先化簡,再求值:5a2b﹣[2a2b﹣3(2abc﹣a2b)]+4abc.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,正確的有( 。
(1)、的平方根是±5;(2)、五邊形的內(nèi)角和是540°;(3)、拋物線y=x2+2x+4與x軸無交點;(4)、等腰三角形兩邊長為6cm和4cm,則它的周長是16cm.
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正比例函數(shù)y=kx的圖象與反比例函數(shù)y=的圖象相交于A、B兩點,且A點的橫坐標(biāo)為2.
(1)求A、B兩點的坐標(biāo);
(2)在x軸上取關(guān)于原點對稱的P、Q兩點,(P點在Q點的右邊),試問四邊形AQBP一定是一個什么形狀的四邊形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=x+3分別交x軸、y軸于A,C兩點,拋物線y=ax2+bx+c(a≠0),經(jīng)過A,C兩點,與x軸交于點B(1,0).
(1)求拋物線的解析式;
(2)點D為直線AC上一點,點E為拋物線上一點,且D,E兩點的橫坐標(biāo)都為2,點F為x軸上的點,若四邊形ADEF是平行四邊形,請直接寫出點F的坐標(biāo);
(3)若點P是線段AC上的一個動點,過點P作x軸的垂線,交拋物線于點Q,連接AQ,CQ,求△ACQ的面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某農(nóng)戶想建造一花圃,用來種植兩種不同的花卉,以供應(yīng)城鎮(zhèn)市場需要,現(xiàn)用長為36m的籬笆,一面砌墻(墻的最大可使用長度l=13m),圍成中間隔有一道籬笆的長方形花圃,設(shè)花圃寬AB為x,面積為S.
(1)求S與x的函數(shù)關(guān)系式.并指出它是一次函數(shù),還是二次函數(shù)?
(2)若要圍成面積為96m2的花圃,求寬AB的長度.
(3)花圃的面積能達到108m2嗎?若能,請求出AB的長度,若不能請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com