【題目】在同一平面直角坐標(biāo)系內(nèi),將函數(shù)y=2(x+1)2﹣1的圖象沿x軸方向向右平移2個單位長度后再沿y軸向下平移1個單位長度,得到圖象的頂點坐標(biāo)是( )
A. (﹣1,1)B. (1,﹣2)C. (2,﹣2)D. (1,﹣1)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若(x+m)(x+n)=x2 -6x+5,則( )
A.m , n同時為負(fù)
B.m , n同時為正
C.m , n異 號
D.m , n異號且絕對值小 的為正
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】操作與探究:
(1)對數(shù)軸上的點P進(jìn)行如下操作:先把點P表示的數(shù)乘以,再把所得數(shù)對應(yīng)的點向右平移1個單位,得到點P的對應(yīng)點P′.
點A,B在數(shù)軸上,對線段AB上的每個點進(jìn)行上述操作后得到線段A′B′,其中點A,B的對應(yīng)點分別為A′,B′.如圖1,若點A表示的數(shù)是﹣3,則點A′表示的數(shù)是 ;若點B′表示的數(shù)是2,則點B表示的數(shù)是 ;已知線段AB上的點E經(jīng)過上述操作后得到的對應(yīng)點E′與點E重合,則點E表示的數(shù)是 .
(2)如圖2,在平面直角坐標(biāo)系xOy中,對正方形ABCD及其內(nèi)部的每個點進(jìn)行如下操作:把每個點的橫、縱坐標(biāo)都乘以同一個實數(shù)a,將得到的點先向右平移m個單位,再向上平移n個單位(m>0,n>0),得到正方形A′B′C′D′及其內(nèi)部的點,其中點A,B的對應(yīng)點分別為A′,B′.已知正方形ABCD內(nèi)部的一個點F經(jīng)過上述操作后得到的對應(yīng)點F′與點F重合,求點F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中, PQ是CA的垂直平分線, CF∥AB交PQ于點F,連接AF.
(1)求證:△AED≌△CFD;
(2)求證:四邊形AECF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某校九年級學(xué)生的身高情況,隨機(jī)抽取部分學(xué)生的身高進(jìn)行調(diào)查,利用所得數(shù)據(jù)繪成如圖統(tǒng)計圖表: 頻數(shù)分布表
身高分組 | 頻數(shù) | 百分比 |
x<155 | 5 | 10% |
155≤x<160 | a | 20% |
160≤x<165 | 15 | 30% |
165≤x<170 | 14 | b |
x≥170 | 6 | 12% |
總計 | 100% |
(1)填空:a= ,b= ;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)該校九年級共有600名學(xué)生,估計身高不低于165cm的學(xué)生大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩家草莓采摘園的草莓品質(zhì)相同,銷售價格也相同.“五一期間”,兩家均推出了優(yōu)惠方案,甲采摘園的優(yōu)惠方案是:游客進(jìn)園需購買50元的門票,采摘的草莓六折優(yōu)惠;乙采摘園的優(yōu)惠方案是:游客進(jìn)園不需購買門票,采摘園的草莓超過一定數(shù)量后,超過部分打折優(yōu)惠.優(yōu)惠期間,設(shè)某游客的草莓采摘量為x(千克),在甲采摘園所需總費用為(元),在乙采摘園所需總費用為(元),圖中折線OAB表示與x之間的函數(shù)關(guān)系.
(1)甲、乙兩采摘園優(yōu)惠前的草莓銷售價格是每千克 元;
(2)求、與x的函數(shù)表達(dá)式;
(3)在圖中畫出與x的函數(shù)圖象,并寫出選擇甲采摘園所需總費用較少時,草莓采摘量x的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)
(2)20132﹣2012×2014(簡便計算)
(3)(3a2)3+a2a4﹣a8÷a2
(4)(x﹣2)(3x﹣1)
(5)(x﹣1)(x+1)﹣(x+2)2
(6)(a+3b﹣2c)(a﹣3b﹣2c)
(7)(m﹣2n+1)2
(8)(2a﹣3b)2(2a+3b)2 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,點P從點C開始沿射線CA方向以1cm/s的速度運動;同時,點Q也從點C開始沿射線CB方向以3cm/s的速度運動.
(1)幾秒后△PCQ的面積為3cm2?此時PQ的長是多少?(結(jié)果用最簡二次根式表示)
(2)幾秒后以A、B、P、Q為頂點的四邊形的面積為22cm2?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com