【題目】為落實疫情期間的垃圾分類,樹立全面環(huán)保意識,某校舉行了“垃圾分類,綠色環(huán)!敝R競賽活動,根據(jù)學生的成績劃分為,,,四個等級,并繪制了不完整的兩種統(tǒng)計圖:

根據(jù)圖中提供的信息,回答下列問題:

1)參加知識競賽的學生共有______人,并把條形統(tǒng)計圖補充完整;

2)扇形統(tǒng)計圖中,____________,等級對應的圓心角為______度;

3)小明是四名獲等級的學生中的一位,學校將從獲等級的學生中任選取2人,參加市舉辦的知識競賽,請用列表法或畫樹狀圖,求小明被選中參加區(qū)知識競賽的概率.

【答案】140,條形統(tǒng)計圖見解析;(210,40,144;(3

【解析】

1)從兩個統(tǒng)計圖可得,“D的有12人,占調(diào)查人數(shù)的30%,可求出調(diào)查人數(shù);進而求出“B的人數(shù),即可補全條形統(tǒng)計圖;
2)計算出“A所占的百分比,“C所占的百分比,進而求出“C所對應的圓心角的度數(shù);
3)用列表法列舉出所有等可能出現(xiàn)的情況,從中找出符合條件的情況數(shù),進而求出概率.

解:(112÷30%=40人,40×20%=8人,
故答案為:40,補全條形統(tǒng)計圖如圖所示:


24÷40=10%,16÷40=40%
360°×40%=144°
故答案為:10,40,144;
3)設除小明以外的三個人記作AB、C,從中任意選取2人,所有可能出現(xiàn)的情況如下:

共有12中可能出現(xiàn)的情況,其中小明被選中的有6種,
所以小明被選中參加區(qū)知識競賽的概率為.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在銳角三角形ABC中,點D,E分別在邊AC,AB上,AGBC于點G,AFDE于點F,EAF=GAC.

(1)求證:ADE∽△ABC;

(2)若AD=3,AB=5,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校開設了“3D”打印、數(shù)學史、詩歌欣賞、陶藝制作四門校本課程,為了解學生對這四門校本課程的喜愛情況,對學生進行了隨機問卷調(diào)查(問卷調(diào)查表如圖所示),將調(diào)查結果整理后繪制了(圖1)、(圖2)兩幅均不完整的統(tǒng)計圖.

請您根據(jù)圖中提供的信息回答下列問題:

1)統(tǒng)計圖中的a= ,b= ;

2)“D”對應扇形的圓心角為 度;

3)根據(jù)調(diào)查結果,請您估計該校1200名學生中最喜歡“數(shù)學史”校本課程的人數(shù);

4)小明和小亮參加校本課程學習,若每人從“A”、“B”、“C”三門校本課程中隨機選取一門,請用畫樹狀圖或列表格的方法,求兩人恰好選中同一門校本課程的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,對稱軸為直線的拋物線經(jīng)過兩點,與軸的另一個交點為,點軸上,且

1)求該拋物線的表達式;

2)設該拋物線上的一個動點的橫坐標為

①當時,求四邊形的面積的函數(shù)關系式,并求出的最大值;

②點在直線上,若以為邊,點、、為頂點的四邊形是平行四邊形,請求出所有符合條件的點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yax2+bx+3x軸交于A(﹣3,0),Bl0)兩點,與y軸交于點C

1)求拋物線的解析式;

2)點P是拋物線上的動點,且滿足SPAO2SPCO,求出P點的坐標;

3)連接BC,點Ex軸一動點,點F是拋物線上一動點,若以B、C、E、F為頂點的四邊形是平行四邊形時,請直接寫出點F的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)軸交于、兩點(點在點左),與軸交于點,連接,點為二次函數(shù)圖象上的動點.

1)若的面積為3,求拋物線的解析式;

2)在(1)的條件下,若在軸上存在點,使得,求點的坐標;

3)若為對稱軸右側拋物線上的動點,直線軸于點,直線軸于點,判斷的值是否為定值,若是,求出定值,若不是請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:

1 2 3

1)初步思考:

如圖1, 中,已知,BC=4,NBC上一點且,試說明:

2)問題提出:

如圖2,已知正方形ABCD的邊長為4,圓B的半徑為2,點P是圓B上的一個動點,求的最小值.

3)推廣運用:

如圖3,已知菱形ABCD的邊長為4,∠B60°,圓B的半徑為2,點P是圓B上的一個動點,求的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰△ABC的底邊BC=20,面積為120,點F在邊BC上,且BF=3FC,EG是腰AC的垂直平分線,若點DEG上運動,則△CDF周長的最小值為__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點Ax1,y1)、Bx2y2)在二次函數(shù)yx2mxn的圖像上,當x11x23時,y1y2

1)若Pab1),Q3b2)是函數(shù)圖象上的兩點,b1b2,則實數(shù)a的取值范圍是(

Aa1 Ba3 Ca1a3 D1a3

2)若拋物線與x軸只有一個公共點,求二次函數(shù)的表達式.

3)若對于任意實數(shù)x1x2都有y1y2≥2,則n的范圍是

查看答案和解析>>

同步練習冊答案