【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2+4x+5y軸交于點(diǎn)A,與x軸的正半軸交于點(diǎn)C.

(1)求直線AC解析式;

(2)過(guò)點(diǎn)AAD平行于x軸,交拋物線于點(diǎn)D,點(diǎn)F為拋物線上的一點(diǎn)(點(diǎn)FAD上方),作EF平行于y軸交AC于點(diǎn)E,當(dāng)四邊形AFDE的面積最大時(shí)?求點(diǎn)F的坐標(biāo),并求出最大面積;

(3)若動(dòng)點(diǎn)P先從(2)中的點(diǎn)F出發(fā)沿適當(dāng)?shù)穆窂竭\(yùn)動(dòng)到拋物線對(duì)稱軸上點(diǎn)M處,再沿垂直于y軸的方向運(yùn)動(dòng)到y軸上的點(diǎn)N處,然后沿適當(dāng)?shù)穆窂竭\(yùn)動(dòng)到點(diǎn)C停止,當(dāng)動(dòng)點(diǎn)P的運(yùn)動(dòng)路徑最短時(shí),求點(diǎn)N的坐標(biāo),并求最短路徑長(zhǎng).

【答案】(1)y=﹣x+5(2)點(diǎn)F(,);四邊形AFDE的面積的最大值為;(3)點(diǎn)N(0),點(diǎn)P的運(yùn)動(dòng)路徑最短距離=2+.

【解析】

(1)先求出點(diǎn)A,點(diǎn)C坐標(biāo),用待定系數(shù)法可求解析式;

(2)先求出點(diǎn)D坐標(biāo),設(shè)點(diǎn)F(x,﹣x2+4x+5),則點(diǎn)E坐標(biāo)為(x,﹣x+5),即可求EF=﹣x2+5x,可求四邊形AFDE的面積,由二次函數(shù)的性質(zhì)可求解;

(3)由動(dòng)點(diǎn)P的運(yùn)動(dòng)路徑=FM+MN+NCGM+2+MH,則當(dāng)點(diǎn)G,點(diǎn)M,點(diǎn)H三點(diǎn)共線時(shí),動(dòng)點(diǎn)P的運(yùn)動(dòng)路徑最小,由兩點(diǎn)距離公式可求解.

解:(1)∵拋物線y=﹣x2+4x+5y軸交于點(diǎn)A,與x軸的正半軸交于點(diǎn)C.

∴當(dāng)x0時(shí),y5,則點(diǎn)A(05)

當(dāng)y0時(shí),0=﹣x2+4x+5

x15,x2=﹣1,

∴點(diǎn)B(1,0),點(diǎn) C(5,0)

設(shè)直線AC解析式為:ykx+b

解得:

∴直線AC解析式為:y=﹣x+5

(2)∵過(guò)點(diǎn)AAD平行于x軸,

∴點(diǎn)D縱坐標(biāo)為5,

5=﹣x2+4x+5,

x10x24,

∴點(diǎn)D(45),

AD4

設(shè)點(diǎn)F(x,﹣x2+4x+5),則點(diǎn)E坐標(biāo)為(x,﹣x+5)

EF=﹣x2+4x+5(x+5)=﹣x2+5x,

∵四邊形AFDE的面積=AD×EF2EF=﹣2x2+10x=﹣2(x)2+

∴當(dāng)x時(shí),四邊形AFDE的面積的最大值為

∴點(diǎn)F(,);

(3)∵拋物線y=﹣x2+4x+5=﹣(x2)2+9,

∴對(duì)稱軸為x2,

MN2,

如圖,將點(diǎn)C向右平移2個(gè)單位到點(diǎn)H(70),過(guò)點(diǎn)F作對(duì)稱軸x2的對(duì)稱點(diǎn)G(),連接GH,交直線x2于點(diǎn)M,

MNCH,MNCH2,

∴四邊形MNCH是平行四邊形,

NCMH,

∵動(dòng)點(diǎn)P的運(yùn)動(dòng)路徑=FM+MN+NCGM+2+MH

∴當(dāng)點(diǎn)G,點(diǎn)M,點(diǎn)H三點(diǎn)共線時(shí),動(dòng)點(diǎn)P的運(yùn)動(dòng)路徑最小,

∴動(dòng)點(diǎn)P的運(yùn)動(dòng)路徑最短距離=2+2+,

設(shè)直線GH解析式為:ymx+n,

,

解得,

∴直線GH解析式為:y=﹣x+,

當(dāng)x2時(shí),y,

∴點(diǎn)N(0,).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】八年級(jí)(1)班研究性學(xué)習(xí)小組為研究全校同學(xué)課外閱讀情況,在全校隨機(jī)邀請(qǐng)了部分同學(xué)參與問(wèn)卷調(diào)查,統(tǒng)計(jì)同學(xué)們一個(gè)月閱讀課外書(shū)的數(shù)量,并繪制了以下統(tǒng)計(jì)圖.

請(qǐng)根據(jù)圖中信息解決下列問(wèn)題:

(1)共有多少名同學(xué)參與問(wèn)卷調(diào)查;

(2)補(bǔ)全條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;

(3)全校共有學(xué)生1500人,請(qǐng)估計(jì)該校學(xué)生一個(gè)月閱讀2本課外書(shū)的人數(shù)約為多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了創(chuàng)建文明城市,增強(qiáng)學(xué)生的環(huán)保意識(shí).隨機(jī)抽取8名學(xué)生,對(duì)他們的垃圾分類投放情況進(jìn)行調(diào)查,這8名學(xué)生分別標(biāo)記為,其中“√”表示投放正確,“×”表示投放錯(cuò)誤,統(tǒng)計(jì)情況如下表.

學(xué)生

垃圾類別

廚余垃圾

可回收垃圾

×

×

×

有害垃圾

×

×

×

×

其他垃圾

×

×

×

1)求8名學(xué)生中至少有三類垃圾投放正確的概率;

2)為進(jìn)一步了解垃圾分類投放情況,現(xiàn)從8名學(xué)生里有害垃圾投放錯(cuò)誤的學(xué)生中隨機(jī)抽取兩人接受采訪,試用標(biāo)記的字母列舉所有可能抽取的結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在地面上豎直安裝著ABCD、EF三根立柱,在同一時(shí)刻同一光源下立柱ABCD形成的影子為BGDH.

1)填空:判斷此光源下形成的投影是: 投影.

2)作出立柱EF在此光源下所形成的影子.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解九年級(jí)學(xué)生的體能狀況,從我縣某校九年級(jí)學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行八百米跑體能測(cè)試,測(cè)試結(jié)果分為AB、C、D四個(gè)等級(jí),請(qǐng)根據(jù)兩幅統(tǒng)計(jì)圖中的信息回答下列問(wèn)題;

(1)求本次測(cè)試共調(diào)查了多少名學(xué)生?并在答題卡上補(bǔ)全條形統(tǒng)計(jì)圖;

(2)經(jīng)測(cè)試,全年級(jí)有4名學(xué)生體能特別好,其中有1名女生,學(xué)校準(zhǔn)備從這4名學(xué)生中任選兩名參加運(yùn)動(dòng)會(huì),請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求出女生被選中的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,N為邊AD上一點(diǎn),連接BN.過(guò)點(diǎn)AAPBN于點(diǎn)P,連接CPM為邊AB上一點(diǎn),連接PM,∠PMA=∠PCB,連接CM,有以下結(jié)論:①PAM∽△PBC;②PMPC;③MP、C、B四點(diǎn)共圓;④ANAM.其中正確的個(gè)數(shù)為( 。

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)D為⊙O上一點(diǎn),點(diǎn)C在直徑AB的延長(zhǎng)線上,且∠CDB=∠CAD,過(guò)點(diǎn)A作⊙O的切線,交CD的延長(zhǎng)線于點(diǎn)E

1)判定直線CD與⊙O的位置關(guān)系,并說(shuō)明你的理由;

2)若CB4,CD8,①求圓的半徑.②求ED的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)yax2+bx+ 的圖象經(jīng)過(guò)A(﹣1,0),B3,0),與y軸相交于點(diǎn)C.點(diǎn)P為第一象限的拋物線上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P分別做BCx軸的垂線,交BC于點(diǎn)EF,交x軸于點(diǎn)MN

1)求這個(gè)二次函數(shù)的解析式;

2)求線段PE最大值,并求出線段PE最大時(shí)點(diǎn)P的坐標(biāo);

3)若SPMN3SPEF時(shí),求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtABC中,∠ACB90°,∠ABC60°,BC4cm,DBC的中點(diǎn),若動(dòng)點(diǎn)E1cm/s的速度從A點(diǎn)出發(fā),沿著ABA的方向運(yùn)動(dòng),設(shè)E點(diǎn)的運(yùn)動(dòng)時(shí)間為t秒(0t12),連接DE,當(dāng)△BDE是直角三角形時(shí),t的值為( 。

A.45B.47C.457D.479

查看答案和解析>>

同步練習(xí)冊(cè)答案