【題目】如圖,已知ABC是等邊三角形,BDAC上的高線.作AEAB于點(diǎn)A,交BD的延長(zhǎng)線于點(diǎn)E.取BE的中點(diǎn)M,連結(jié)AM

1)求證:AEM是等邊三角形;

2)若AE2,求AEM的面積.

【答案】1)見解析;(2

【解析】

1)由等邊三角形的性質(zhì)可得∠ABD30°,由直角三角形的性質(zhì)可得AMEM,可得△AEM是等邊三角形;

2)由直角三角形的性質(zhì)可求AD的長(zhǎng),即可求解.

證明:(1∵△ABC是等邊三角形,BDAC上的高線,

∴∠ABD30°,且AE⊥AB,

∴∠AEB60°,

點(diǎn)MBE中點(diǎn),∠EAB90°,

∴AMEM,且∠AEB60°

∴△AEM是等邊三角形;

2∵△AEM是等邊三角形,AC⊥BD

∴∠EAD∠MAD30°,DEDN,AEEM2

∴DEAE1,ADDE,

∴△AEM的面積=×EM×AD×2×

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將兩個(gè)全等的直角三角形ABC和DBE按圖①方式擺放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,點(diǎn)E落在AB上,DE所在直線交AC所在直線于點(diǎn)F.

(1)求證:AF+EF=DE;

(2)若將圖①中的△DBE繞點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)角α,且0°<α<60°,其它條件不變,請(qǐng)?jiān)趫D②中畫出變換后的圖形,并直接寫出你在(1)中猜想的結(jié)論是否仍然成立;

(3)若將圖①中的△DBE繞點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)角β,且60°<β<180°,其它條件不變,如圖③.你認(rèn)為(1)中猜想的結(jié)論還成立嗎?若成立,寫出證明過程;若不成立,請(qǐng)寫出AF、EF與DE之間的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形①、②在直線上,正方形③如圖放置,若正方形①、②的面積分別2754,則正方形③的邊長(zhǎng)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,EBC的中點(diǎn),連接AE并延長(zhǎng)交DC的延長(zhǎng)線于點(diǎn)F.

(1)求證:AB=CF;

(2)連接DE,若AD=2AB,求證:DEAF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),將弧BC沿直線BC翻折,使弧BC的中點(diǎn)D恰好與圓心O重合,連接OC,CD,BD,過點(diǎn)C的切線與線段BA的延長(zhǎng)線交于點(diǎn)P,連接AD,在PB的另一側(cè)作∠MPB=ADC.

(1)判斷PM與⊙O的位置關(guān)系,并說明理由;

(2)若PC=,求四邊形OCDB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,AB的垂直平分線交AB于M,交AC于N.

(1)若∠ABC=70°,求∠MNA的度數(shù).

(2)連接NB,若AB=8cm,△NBC的周長(zhǎng)是14cm.求BC的長(zhǎng);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長(zhǎng)度為1個(gè)單位長(zhǎng)度的小正方形組成的正方形中,點(diǎn)A,B,C在小正方形的頂點(diǎn)上.

1)在圖中畫出與ABC關(guān)于直線l成軸對(duì)稱的ABC

2)三角形ABC的面積為   ;

3)在直線l上找一點(diǎn)P,使PA+PB的長(zhǎng)最短.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線PQMN,點(diǎn)APQ上,直角BEF的直角邊BEMN上,且∠B=90°,BEF=30°.現(xiàn)將BEF繞點(diǎn)B以每秒的速度按逆時(shí)針方向旋轉(zhuǎn)(E,F(xiàn)的對(duì)應(yīng)點(diǎn)分別是E′,F(xiàn)′),同時(shí),射線AQ繞點(diǎn)A以每秒的速度按順時(shí)針方向旋轉(zhuǎn)(Q的對(duì)應(yīng)點(diǎn)是Q′).設(shè)旋轉(zhuǎn)時(shí)間為t秒(0≤t≤45).

(1)MBF′=__.(用含t的代數(shù)式表示)

(2)在旋轉(zhuǎn)的過程中,若射線AQ′與邊E′F′平行時(shí),則t的值為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了保護(hù)視力,某學(xué)校開展了全校性的視力保健活動(dòng),活動(dòng)前,隨機(jī)抽取部分學(xué)生,檢查他們的視力,結(jié)果如圖所示,(數(shù)據(jù)包括左端點(diǎn)不包括右端點(diǎn),精確到0.1);活動(dòng)后,再次檢查這部分學(xué)生的視力,結(jié)果如表格所示.

抽取的學(xué)生活動(dòng)后視力頻數(shù)分布表

分組

頻數(shù)

4.0≤x<4.2

2

4.2≤x<4.4

4

4.4≤x<4.6

6

4.6≤x<4.8

10

4.8≤x<5.0

21

5.0≤x<5.2

7

(1)此次調(diào)查所抽取的樣本容量為   ;

(2)若視力達(dá)到4.8以上(含4.8)為達(dá)標(biāo),請(qǐng)估計(jì)活動(dòng)前該校學(xué)生的視力達(dá)標(biāo)率;

(3)請(qǐng)選擇適當(dāng)?shù)慕y(tǒng)計(jì)量,從兩個(gè)不同的角度分析活動(dòng)前后相關(guān)數(shù)據(jù),并評(píng)價(jià)視力保健活動(dòng)的效果.

查看答案和解析>>

同步練習(xí)冊(cè)答案