【題目】如圖,平行四邊形中,對角線相交于點,、分別是對角線BD上的兩點,給出下列四個條件:①;②;③;④.其中能判斷四邊形是平行四邊形的個數(shù)是

A. 1B. 2C. 3D. 4

【答案】C

【解析】

根據(jù)平行四邊形的判定及全等三角形的性質(zhì)即可作出判斷.

解:A、∵在平行四邊形ABCD中,OA=OC,OB=OD,
BE=DF,則OE=OF,
∴四邊形AECF是平行四邊形;

B、∵在平行四邊形ABCD中,OA=OC,OB=OD
DE=BF,則OE=OF,
∴四邊形AECF是平行四邊形;

C、若∠BAE=DAF,不能判斷四邊形是平行四邊形;

D、∵在平行四邊形ABCD中,ADBC,AD=BC

∴∠ADB =DBC ,

∵∠BCE=DAF,

在△DAF和△BCE中, ,

∴△DAF≌△BCE,

DF=BE,

∵在平行四邊形ABCD中,OA=OC,OB=OD,

OE=OF,
∴四邊形AECF是平行四邊形.

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:∠AOB90°,∠COD20°,OM平分∠AOC,ON平分∠BOD.

1)如圖1,∠COD在∠AOB內(nèi)部,且∠AOC30°.則∠MON的大小為   .

2)如圖1,∠COD在∠AOB內(nèi)部,若∠AOC的度數(shù)未知,是否能求出∠MON的大小,若能,寫出你的解答過程;若不能,說明理由.

3)如圖2,∠COD在∠AOB外部(OMOD上方,∠BOC180°),試求出∠MON的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知R tABC,ABC90°,以直角邊AB為直徑作O,交斜邊AC于點D,連結(jié)BD

1)若AB3,BC4求邊BD的長;

2)取BC的中點E,連結(jié)ED,試證明ED與⊙O相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市創(chuàng)建綠色發(fā)展模范城市,針對境內(nèi)長江段兩種主要污染源:生活污水和沿江工廠污染物排放,分別用生活污水集中處理(下稱甲方案)和沿江工廠轉(zhuǎn)型升級(下稱乙方案)進行治理,若江水污染指數(shù)記為Q,沿江工廠用乙方案進行一次性治理(當(dāng)年完工),從當(dāng)年開始,所治理的每家工廠一年降低的Q值都以平均值n計算.第一年有40家工廠用乙方案治理,共使Q值降低了12.經(jīng)過三年治理,境內(nèi)長江水質(zhì)明顯改善.

(1)求n的值;

(2)從第二年起,每年用乙方案新治理的工廠數(shù)量比上一年都增加相同的百分?jǐn)?shù)m,三年來用乙方案治理的工廠數(shù)量共190家,求m的值,并計算第二年用乙方案新治理的工廠數(shù)量;

(3)該市生活污水用甲方案治理,從第二年起,每年因此降低的Q值比上一年都增加個相同的數(shù)值a.在(2)的情況下,第二年,用乙方案所治理的工廠合計降低的Q值與當(dāng)年因甲方案治理降低的Q值相等,第三年,用甲方案使Q值降低了39.5.求第一年用甲方案治理降低的Q值及a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ACDE是證明勾股定理時用到的一個圖形,a、b、cRtABCRtBED邊長,易知AE=c這時我們把關(guān)于x的形如ax+cx+b=0的一元二次方程稱為“勾系一元二次方程”.

請解決下列問題

寫出一個“勾系一元二次方程”;

求證關(guān)于x的“勾系一元二次方程”ax+cx+b=0必有實數(shù)根;

x=1是“勾系一元二次方程”ax+cx+b=0的一個根,且四邊形ACDE的周長是ABC面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列一元一次方程解應(yīng)用題:

學(xué)生在素質(zhì)教育基地進行社會實踐活動,幫助農(nóng)民伯伯采摘了黃瓜和茄子共80千克,了解到這些蔬菜的種植成本共180元,還了解到如下信息:

(1)求采摘的黃瓜和茄子各多少千克?

(2)這些采摘的黃瓜和茄子可賺多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】昆明市某校學(xué)生會干部對校學(xué)生會倡導(dǎo)的牽手滇西自愿捐款活動進行抽樣調(diào)查,得到一組學(xué)生捐款情況的數(shù)據(jù),對學(xué)校部分捐款人數(shù)進行調(diào)查和分組統(tǒng)計后,將數(shù)據(jù)整理成如圖所示的統(tǒng)計圖(圖中信息不完整).已知AB兩組捐款人數(shù)的比為15

組別

捐款額x/

人數(shù)

A

1≤x10

a

B

10≤x20

100

C

20≤x30

D

30≤x40

E

40≤x50

請結(jié)合以上信息解答下列問題.

1a   ,本次調(diào)查樣本的容量是   ;

2)先求出C組的人數(shù),再補全捐款人數(shù)分組統(tǒng)計圖1”;

3)根據(jù)統(tǒng)計情況,估計該校參加捐款的4500名學(xué)生有多少人捐款在2040元之間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于有理數(shù)a,b,定義兩種新運算“※”,規(guī)定: a※b=a2+2ab,ab=|a+ b|-|a- b|,例如,2※(- 1)=22+2×2×(-1)=0,(- 2) ※3=|-2+3|-| - 2-3|= -4. b c

(1)計算(- 3) ※2的值;

(2)a, b在數(shù)軸上的位置如圖所示,化簡ab;

(3)(-2) ※x=2(- 4)+ 3x,x的值:

(4)對于任意有理數(shù)m,n,請你定義一種新運算,使得(-3) 5 = 4,直接寫出你定義的運算:mn=_ (用含m,n的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊ABC中,AB=10,DBC的中點,EABC內(nèi)一動點,DE=3,連接AE,將線段AE繞點A逆時針旋轉(zhuǎn)60°AF,連接DF,求線段DF的最小值.

查看答案和解析>>

同步練習(xí)冊答案