【題目】某市創(chuàng)建綠色發(fā)展模范城市,針對(duì)境內(nèi)長(zhǎng)江段兩種主要污染源:生活污水和沿江工廠污染物排放,分別用生活污水集中處理(下稱甲方案)和沿江工廠轉(zhuǎn)型升級(jí)(下稱乙方案)進(jìn)行治理,若江水污染指數(shù)記為Q,沿江工廠用乙方案進(jìn)行一次性治理(當(dāng)年完工),從當(dāng)年開(kāi)始,所治理的每家工廠一年降低的Q值都以平均值n計(jì)算.第一年有40家工廠用乙方案治理,共使Q值降低了12.經(jīng)過(guò)三年治理,境內(nèi)長(zhǎng)江水質(zhì)明顯改善.

(1)求n的值;

(2)從第二年起,每年用乙方案新治理的工廠數(shù)量比上一年都增加相同的百分?jǐn)?shù)m,三年來(lái)用乙方案治理的工廠數(shù)量共190家,求m的值,并計(jì)算第二年用乙方案新治理的工廠數(shù)量;

(3)該市生活污水用甲方案治理,從第二年起,每年因此降低的Q值比上一年都增加個(gè)相同的數(shù)值a.在(2)的情況下,第二年,用乙方案所治理的工廠合計(jì)降低的Q值與當(dāng)年因甲方案治理降低的Q值相等,第三年,用甲方案使Q值降低了39.5.求第一年用甲方案治理降低的Q值及a的值.

【答案】(1)0.3;(2)60家;(3)Q=20.5;a=9.5.

【解析】

(1)直接利用第一年有40家工廠用乙方案治理,共使Q值降低了12,得出等式求出答案;

(2)利用從第二年起,每年用乙方案新治理的工廠數(shù)量比上一年都增加相同的百分?jǐn)?shù)m,三年來(lái)用乙方案治理的工廠數(shù)量共190家得出等式求出答案;

(3)利用n的值即可得出關(guān)于a的等式求出答案.

1)由題意可得:40n=12,

解得:n=0.3;

(2)由題意可得:40+40(1+m)+40(1+m)2=190,

解得:m1=,m2=﹣(舍去),

∴第二年用乙方案新治理的工廠數(shù)量為:40(1+m)=40(1+50%)=60(家),

(3)設(shè)第一年用乙方案治理降低了100n=100×0.3=30,

則(30﹣a)+2a=39.5,

解得:a=9.5,

Q=20.5.

設(shè)第一年用甲方案整理降低的Q值為x,

第二年Q值因乙方案治理降低了100n=100×0.3=30,

解法一:(30﹣a)+2a=39.5

a=9.5

x=20.5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:

123×-5--3÷

2)(-3×+8×-2-11÷-);

3)(-12--1×-24);

4-22-3+[1+-2×-1]

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖為手的示意圖,在各個(gè)手指間標(biāo)記字母A、B、C、D.請(qǐng)你按圖中箭頭所指方向(即ABCDCBABC→…的方式)從A開(kāi)始 數(shù)連續(xù)的正整數(shù)12,3,4…,當(dāng)數(shù)到12時(shí),對(duì)應(yīng)的字母是_____;當(dāng)字母C201次出現(xiàn)時(shí),恰好數(shù)到的數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二次函數(shù)y=x2+x的圖象與x軸交于點(diǎn) AB,交 y 軸于點(diǎn) C,拋物線的頂點(diǎn)為 D

(1)求拋物線頂點(diǎn) D 的坐標(biāo)以及直線 AC 的函數(shù)表達(dá)式;

(2)點(diǎn) P 是拋物線上一點(diǎn),且點(diǎn)P在直線 AC 下方,點(diǎn) E 在拋物線對(duì)稱軸上,當(dāng)△BCE 的周長(zhǎng)最小時(shí),求△PCE 面積的最大值以及此時(shí)點(diǎn) P 的坐標(biāo);

3)在(2)的條件下,過(guò)點(diǎn) P 且平行于 AC 的直線分別交x軸于點(diǎn) M,交 y 軸于點(diǎn)N,把拋物線y=x2+x沿對(duì)稱軸上下平移,平移后拋物線的頂點(diǎn)為 D',在平移的過(guò)程中,是否存在點(diǎn) D',使得點(diǎn) D'M,N 三點(diǎn)構(gòu)成的三角形為直角三角形,若存在,直接寫(xiě)出點(diǎn) D'的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】新華商場(chǎng)銷售某種冰箱,每臺(tái)進(jìn)貨價(jià)為2500元.市場(chǎng)調(diào)研表明:當(dāng)銷售價(jià)為2900元時(shí),平均每天能售出8臺(tái);而當(dāng)銷售價(jià)每降低50元時(shí),平均每天就能多售出4臺(tái).商場(chǎng)要想使這種冰箱的銷售利潤(rùn)平均每天達(dá)到5000元,設(shè)每臺(tái)冰箱的定價(jià)為x元,則x滿足的關(guān)系式為(

A. (x2500)(8+4×)=5000 B. (2900x2500)(8+4×)=5000

C. (x2500)(8+4×)=5000 D. (2900x)(8+4×)=5000

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在“宏揚(yáng)傳統(tǒng)文化,打造書(shū)香校園”活動(dòng)中,學(xué)校計(jì)劃開(kāi)展四項(xiàng)活動(dòng):“A﹣國(guó)學(xué)誦讀”、“B﹣演講”、“C﹣課本劇”、“D﹣書(shū)法”,要求每位同學(xué)必須且只能參加其中一項(xiàng)活動(dòng),學(xué)校為了了解學(xué)生的意愿,隨機(jī)調(diào)查了部分學(xué)生,結(jié)果統(tǒng)計(jì)如下:

(1)如圖,希望參加活動(dòng)C占20%,希望參加活動(dòng)B占15%,則被調(diào)查的總?cè)藬?shù)為 人,扇形統(tǒng)計(jì)圖中,希望參加活動(dòng)D所占圓心角為 度,根據(jù)題中信息補(bǔ)全條形統(tǒng)計(jì)圖.

(2)學(xué)校現(xiàn)有800名學(xué)生,請(qǐng)根據(jù)圖中信息,估算全校學(xué)生希望參加活動(dòng)A有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形中,對(duì)角線相交于點(diǎn),、分別是對(duì)角線BD上的兩點(diǎn),給出下列四個(gè)條件:①;②;③;④.其中能判斷四邊形是平行四邊形的個(gè)數(shù)是

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,A、B在數(shù)軸上對(duì)應(yīng)的數(shù)分別用、表示,且.

(1)數(shù)軸上點(diǎn)A表示的數(shù)是   ,點(diǎn)B表示的數(shù)是 

(2)若一動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以3個(gè)單位長(zhǎng)度/秒速度由A向B運(yùn)動(dòng);動(dòng)點(diǎn)Q從原點(diǎn)O出發(fā),以1個(gè)單位長(zhǎng)度/秒速度向B運(yùn)動(dòng),點(diǎn)P、Q同時(shí)出發(fā),點(diǎn)Q運(yùn)動(dòng)到B點(diǎn)時(shí)兩點(diǎn)同時(shí)停止.設(shè)點(diǎn)Q運(yùn)動(dòng)時(shí)間為t秒.

若P從A到B運(yùn)動(dòng),則P點(diǎn)表示的數(shù)為 ,Q點(diǎn)表示的數(shù)為 .用含的式子表示)

②當(dāng)t為何值時(shí),點(diǎn)P與點(diǎn)Q之間的距離為2個(gè)單位長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于二次函數(shù)有下列說(shuō)法:

如果當(dāng)x≤1時(shí)的增大而減小,則m1;

如果它的圖象與x軸的兩交點(diǎn)的距離是4,;

如果將它的圖象向左平移3個(gè)單位后的函數(shù)的最小值是-4,m=-1;

如果當(dāng)x=1時(shí)的函數(shù)值與x=2013時(shí)的函數(shù)值相等,則當(dāng)x=2014時(shí)的函數(shù)值為-3

其中正確的說(shuō)法是

查看答案和解析>>

同步練習(xí)冊(cè)答案