【題目】如圖,已知拋物線經(jīng)過A(-3,0),B(1,0),C(0,3)三點(diǎn),其頂點(diǎn)為D,對(duì)稱軸是直線l,l與x軸交于點(diǎn)H.
(1)求該拋物線的解析式;
(2)若點(diǎn)P是該拋物線對(duì)稱軸l上的一個(gè)動(dòng)點(diǎn),求△PBC周長的最小值;
(3)如圖(2),若E是線段AD上的一個(gè)動(dòng)點(diǎn)( E與A、D不重合),過E點(diǎn)作平行于y軸的直線交拋物線于點(diǎn)F,交x軸于點(diǎn)G,設(shè)點(diǎn)E的橫坐標(biāo)為m,△ADF的面積為S.
①求S與m的函數(shù)關(guān)系式;
②S是否存在最大值?若存在,求出最大值及此時(shí)點(diǎn)E的坐標(biāo); 若不存在,請(qǐng)說明理由.
【答案】解:(1)∵拋物線經(jīng)過A(-3,0),B(1,0),
∴可設(shè)拋物線交點(diǎn)式為。
又∵拋物線經(jīng)過C(0,3),∴。
∴拋物線的解析式為:,即。
(2)∵△PBC的周長為:PB+PC+BC,且BC是定值。
∴當(dāng)PB+PC最小時(shí),△PBC的周長最小。
∵點(diǎn)A、點(diǎn)B關(guān)于對(duì)稱軸I對(duì)稱,
∴連接AC交l于點(diǎn)P,即點(diǎn)P為所求的點(diǎn)。
∵AP=BP,∴△PBC的周長最小是:PB+PC+BC=AC+BC。
∵A(-3,0),B(1,0),C(0,3),∴AC=3,BC=。
∴△PBC的周長最小是:。
(3)①∵拋物線頂點(diǎn)D的坐標(biāo)為(﹣1,4),A(﹣3,0),
∴直線AD的解析式為y=2x+6
∵點(diǎn)E的橫坐標(biāo)為m,∴E(m,2m+6),F(xiàn)(m,)
∴。
∴。
∴S與m的函數(shù)關(guān)系式為。
②,
∴當(dāng)m=﹣2時(shí),S最大,最大值為1,此時(shí)點(diǎn)E的坐標(biāo)為(﹣2,2)。
【解析】(1)根據(jù)函數(shù)圖象經(jīng)過的三點(diǎn),用待定系數(shù)法確定二次函數(shù)的解析式即可。
(2)根據(jù)BC是定值,得到當(dāng)PB+PC最小時(shí),△PBC的周長最小,根據(jù)點(diǎn)的坐標(biāo)求得相應(yīng)線段的長即可。
(3)設(shè)點(diǎn)E的橫坐標(biāo)為m,表示出E(m,2m+6),F(xiàn)(m,),最后表示出EF的長,從而表示出S于m的函數(shù)關(guān)系,然后求二次函數(shù)的最值即可。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=-x2+2x+m+1交x軸于點(diǎn)A(a,0)和B(b,0),交y軸于點(diǎn)C,拋物線的頂點(diǎn)為D,下列四個(gè)判斷:①當(dāng)x>0時(shí),y>0;②若a=-1,則b=3;③拋物線上有兩點(diǎn)P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,則y1>y2;④點(diǎn)C關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)為E,點(diǎn)G、F分別在x軸和y軸上,當(dāng)m=2時(shí),四邊形EDGF周長的最小值為,其中,判斷正確的序號(hào)是( )
A.①②B.②③C.①③D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,學(xué)校準(zhǔn)備在教學(xué)樓后面搭建一個(gè)簡易矩形自行車車棚,一邊利用教學(xué)樓的后墻(可利用的墻長為19m),另外三邊利用學(xué),F(xiàn)有總長38m的鐵欄圍成.
(1)若圍成的面積為180m,試求出自行車車棚的長和寬;
(2)能圍成的面積為200m自行車車棚嗎?如果能,請(qǐng)你給出設(shè)計(jì)方案;如果不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=﹣x+m分別交x軸,y軸于A,B兩點(diǎn),已知點(diǎn)C(2,0).
(1)當(dāng)直線AB經(jīng)過點(diǎn)C時(shí),點(diǎn)O到直線AB的距離是 ;
(2)設(shè)點(diǎn)P為線段OB的中點(diǎn),連結(jié)PA,PC,若∠CPA=∠ABO,則m的值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一副三角板的三個(gè)內(nèi)角分別是90°,45°,45°和90°,60°,30°,按如圖所示疊放在一起(點(diǎn)A,D,B在同一直線上),若固定△ABC,將△BDE繞著公共頂點(diǎn)B順時(shí)針旋轉(zhuǎn)α度(0<α<180),當(dāng)邊DE與△ABC的某一邊平行時(shí),相應(yīng)的旋轉(zhuǎn)角α的值為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)與x軸交于點(diǎn)B和點(diǎn)A(-1,0),與y軸交于點(diǎn)C,與一次函數(shù)交于點(diǎn)A和點(diǎn)D.
1.求出的值;
2.若直線AD上方的拋物線存在點(diǎn)E,可使得△EAD面積最大,求點(diǎn)E的坐標(biāo);
3.點(diǎn)F為線段AD上的一個(gè)動(dòng)點(diǎn),點(diǎn)F到(2)中的點(diǎn)E的距離與到y軸的距離之和記為d,求d的最小值及此時(shí)點(diǎn)F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為1,點(diǎn)A與原點(diǎn)重合,點(diǎn)B在y軸的正半軸上,點(diǎn)D在x軸的負(fù)半軸上,將正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至正方形AB'C′D′的位置,B'C′與CD相交于點(diǎn)M,則點(diǎn)M的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)的圖象與反比例函數(shù)的圖象交于點(diǎn),與軸交于點(diǎn),若,且.
(1)求反比例函數(shù)與一次函數(shù)的表達(dá)式;
(2)若點(diǎn)為x軸上一點(diǎn),是等腰三角形,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將邊長為6的正方形沿其對(duì)角線剪開,再把沿著方向平移,得到,當(dāng)兩個(gè)三角形重疊部分的面積為5時(shí),則為______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com