【題目】如圖所示,在△ABC中,∠BAC=90°,AB⊥AC,AB=3,BC=5,EF垂直平分BC,點(diǎn)P為直線(xiàn)EF上的任一點(diǎn),則AP+BP的最小值是

【答案】4
【解析】首先根據(jù)Rt△ABC的勾股定理可得:AC=4,根據(jù)對(duì)稱(chēng)圖形的性質(zhì)可得:BP=CP,即AP+BP=AP+CP,則當(dāng)A、P、C三點(diǎn)共線(xiàn)時(shí),AP+CP最小,就是AP+BP最。


【考點(diǎn)精析】關(guān)于本題考查的線(xiàn)段垂直平分線(xiàn)的性質(zhì)和勾股定理的概念,需要了解垂直于一條線(xiàn)段并且平分這條線(xiàn)段的直線(xiàn)是這條線(xiàn)段的垂直平分線(xiàn);線(xiàn)段垂直平分線(xiàn)的性質(zhì)定理:線(xiàn)段垂直平分線(xiàn)上的點(diǎn)和這條線(xiàn)段兩個(gè)端點(diǎn)的距離相等;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)y=﹣x﹣4與拋物線(xiàn)y=ax2+bx+c相交于A(yíng),B兩點(diǎn),其中A,B兩點(diǎn)的橫坐標(biāo)分別為﹣1和﹣4,且拋物線(xiàn)過(guò)原點(diǎn).

(1)求拋物線(xiàn)的解析式;

(2)在坐標(biāo)軸上是否存在點(diǎn)C,使△ABC為等腰三角形?若存在,求出點(diǎn)C的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;

(3)若點(diǎn)P是線(xiàn)段AB上不與A,B重合的動(dòng)點(diǎn),過(guò)點(diǎn)P作PE∥OA,與拋物線(xiàn)第三象限的部分交于一點(diǎn)E,過(guò)點(diǎn)E作EG⊥x軸于點(diǎn)G,交AB于點(diǎn)F,若S△BGF=3S△EFP,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)團(tuán)委會(huì)為研究該校學(xué)生的課余活動(dòng)情況,采取抽樣的方法,從閱讀、運(yùn)動(dòng)、娛樂(lè)、其它等四個(gè)方面調(diào)查了若干名學(xué)生的興趣愛(ài)好,并將調(diào)查的結(jié)果繪制了如下的兩幅不完整的統(tǒng)計(jì)圖(如圖1,圖2),請(qǐng)你根據(jù)圖中提供的信息解答下列問(wèn)題:

(1)在這次研究中,一共調(diào)查了多少名學(xué)生?

(2)“其它”在扇形圖中所占的圓心角是多少度?

(3)補(bǔ)全頻數(shù)分布折線(xiàn)圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】取一張矩形紙片進(jìn)行折疊,具體操作過(guò)程如下:第一步:先把矩形ABCD對(duì)折,折痕為MN,如圖1;第二步:再把B點(diǎn)疊在折痕線(xiàn)MN上,折痕為AE,點(diǎn)BMN上的對(duì)應(yīng)點(diǎn)為B',得RtAB'E,如圖2;第三步:沿EB'線(xiàn)折疊得折痕EF,使A點(diǎn)落在EC的延長(zhǎng)線(xiàn)上,如圖3.  

利用展開(kāi)圖4探究:

(1)△AEF是什么三角形?證明你的結(jié)論;

(2)對(duì)于任一矩形,按照上述方法是否都能折出這種三角形?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)y=x24xx軸交于O,A兩點(diǎn),P為拋物線(xiàn)上一點(diǎn),過(guò)點(diǎn)P的直線(xiàn)y=x+m與對(duì)稱(chēng)軸交于點(diǎn)Q

1)這條拋物線(xiàn)的對(duì)稱(chēng)軸是 ,直線(xiàn)PQx軸所夾銳角的度數(shù)是 ;

2)若兩個(gè)三角形面積滿(mǎn)足SPOQ=SPAQ,求m的值;

3)當(dāng)點(diǎn)Px軸下方的拋物線(xiàn)上時(shí),過(guò)點(diǎn)C2,2)的直線(xiàn)AC與直線(xiàn)PQ交于點(diǎn)D,求:PDDQ的最大值;PDDQ的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班在一次班會(huì)課上,就“遇見(jiàn)路人摔倒后如何處理”的主題進(jìn)行討論,并對(duì)全班50名學(xué)生的處理方式進(jìn)行統(tǒng)計(jì),得出相關(guān)統(tǒng)計(jì)表和統(tǒng)計(jì)圖:

請(qǐng)根據(jù)圖表所提供的信息回答下列問(wèn)題:

(1)統(tǒng)計(jì)表中的m=_____,n=_____;

(2)補(bǔ)全頻數(shù)分布直方圖;

(3)若該校有2000名學(xué)生,請(qǐng)據(jù)此估計(jì)該校學(xué)生采取“馬上救助”方式的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái),我國(guó)多個(gè)城市遭遇霧霾天氣,空氣中可吸入顆粒(又稱(chēng)PM2.5)濃度升高,為應(yīng)對(duì)空氣污染,小強(qiáng)家購(gòu)買(mǎi)了空氣凈化器,該裝置可隨時(shí)顯示室內(nèi)PM2.5的濃度,并在PM2.5濃度超過(guò)正常值25(mg/m3)時(shí)吸收PM2.5以?xún)艋諝猓S著空氣變化的圖象(如圖),請(qǐng)根據(jù)圖象,解答下列問(wèn)題:

(1)寫(xiě)出點(diǎn)M的實(shí)際意義
(2)求第1小時(shí)內(nèi),y與t的一次函數(shù)表達(dá)式;
(3)已知第5﹣6小時(shí)是小強(qiáng)媽媽做晚餐的時(shí)間,廚房?jī)?nèi)油煙導(dǎo)致PM2.5濃度升高.若該凈化器吸收PM2.5的速度始終不變,則第6小時(shí)之后,預(yù)計(jì)經(jīng)過(guò)多長(zhǎng)時(shí)間室內(nèi)PM2.5濃度可恢復(fù)正常?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)y=﹣ x2+mx+n的圖象經(jīng)過(guò)點(diǎn)A(2,3),對(duì)稱(chēng)軸為直線(xiàn)x=1,一次函數(shù)y=kx+b的圖象經(jīng)過(guò)點(diǎn)A,交x軸于點(diǎn)P,交拋物線(xiàn)于另一點(diǎn)B,點(diǎn)A、B位于點(diǎn)P的同側(cè).

(1)求拋物線(xiàn)的解析式;

(2)若PA:PB=3:1,求一次函數(shù)的解析式;

(3)在(2)的條件下,當(dāng)k>0時(shí),拋物線(xiàn)的對(duì)稱(chēng)軸上是否存在點(diǎn)C,使得⊙C同時(shí)與x軸和直線(xiàn)AP都相切,如果存在,請(qǐng)求出點(diǎn)C的坐標(biāo),如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,CD為AB邊上的高,若點(diǎn)A關(guān)于CD所在直線(xiàn)的對(duì)稱(chēng)點(diǎn)E恰好為AB的中點(diǎn),則∠B的度數(shù)是( )

A.60°
B.45°
C.30°
D.75°

查看答案和解析>>

同步練習(xí)冊(cè)答案