精英家教網 > 初中數學 > 題目詳情

【題目】如圖,要用籬笆(虛線部分)成一個矩形苗圃,其中兩邊靠的墻足夠長,中間用平行于的籬笆隔開,已知籬笆的總長度為18米,設矩形苗圃的一邊的長為,矩形苗圃面積為.

1)求的函數關系式;

2)求所圍矩形苗圃的面積最大值;

3)當所圍矩形苗圃的面積為時,則的長為多少米?

【答案】(1)y=;(2) 所圍矩形苗圃的面積最大值為;(3) 時,所圍矩形苗圃的面積為

【解析】

( 1 )因為設AB邊的長度為x,所以可得BC= (18-2x),然后代入y= 化簡即可; ( 2 )利用頂點坐標公式求出頂點坐標,確定出頂點坐標即可得出結論;(3)令y=40代入即可求出x的值

1)由題知

;

2)∵,

∴當時,.

即:所圍矩形苗圃的面積最大值為.

3)根據題意,得:,

解得:,

答:當時,所圍矩形苗圃的面積為

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,一次函數的圖象與反比例函數的圖象交于A(﹣2,1),B1,n)兩點.

根據以往所學的函數知識以及本題的條件,你能提出求解什么問題?并解決這些問題(至少三個問題).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】問題提出

1)如圖1,的邊BC在直線n上,過頂點A作直線mn,在直線m上任取一點D連接BD,CD,則的面積_______的面積(填“等于”大于”或“小于”)

問題探究

2)如圖2,在菱形ABCD和菱形BGFE中,,求的面積.

問題解決

3)如圖3在矩形ABCD中,,在矩形ABCD內(可以在邊上)存在點P,使得的面積等于矩形ABCD的面積的,求周長的最小值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在等邊ABC中,以BC為弦的⊙O分別與ABAC交于點DE,點FBC延長線上一點,CFAE,連接EF

1)如圖1,BC為直徑,求證:EF是⊙O的切線;

2)如圖2,EF與⊙O交于點G,⊙O的半徑為1,BC的長為π,求BF的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形 ACDE 是證明勾股定理時用到的一個圖形,a 、bcRtABCRtBED 的邊長,已知,這時我們把關于 x 的形如二次方程稱為勾系一元二次方程

請解決下列問題:

(1)寫出一個勾系一元二次方程;

(2)求證:關于 x勾系一元二次方程,必有實數根;

(3)若 x 1勾系一元二次方程的一個根,且四邊形 ACDE 的周長是6,求ABC 的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,二次函數y=ax2+bx+ca≠0)的圖象與x軸交于點A、B兩點,與y軸交于點C,對稱軸為直線x=-1,點B的坐標為(1,0),則下列結論:①AB=4;②b2-4ac0;③ab0;④a2-ab+ac0,其中正確的結論有( 。﹤.

A. 3B. 4C. 2D. 1

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,矩形ABCD的頂點A、Bx軸的正半軸上,反比例函數y(k0)在第一象限內的圖象經過點D,交BC于點E.若AB4CE2BE,tanAOD,則k的值_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點0 RtABC斜邊AB上的一點,以OA 為半徑的☉OBC切于點D,與AC 交于點E,連接AD.

(1) 求證: AD平分∠BAC;

(2)若∠BAC= 60°,OA=4,求陰影部分的面積(結果保留π).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】二次函數圖象的頂點在原點O,且過點(1,1),點F0,)在y軸上,直線y軸交于點H,

1)求二次函數的解析式;

2)點P是(1)中圖象上的點,過點Px軸的垂線與直線交于點M,求證:FM平分∠OFP;

3)當點P橫坐標為時,過O點作OQOP交拋物線于點Q,在y軸上找點C,使OCQ是以OQ為腰的等腰三角形,求點C的坐標.

查看答案和解析>>

同步練習冊答案