【題目】如圖,四邊形是菱形,在上,在延長線上,和相交于點,若,,的長為,則菱形的面積為________.
【答案】
【解析】
連接AC、BD,交于點O,分別取AE、BF的中點M、N,連接OM、ON,在AB上截取AH=AM,連接OH,過C作CP⊥AF于P,根據(jù)中位線定理可得到OM=CE,ON=DF,則有OM=ON,證明△AMO≌△AHO,得OM=OH=ON,繼而可得∠AMO+∠ONH=180,再根據(jù)平行線的性質(zhì)可得∠DAB+∠EGF=180°,從而得∠DAB=30°,繼而根據(jù)含30度角的直角三角形的性質(zhì)求出菱形高PC的長,代入面積公式即可求得答案.
連接AC、BD,交于點O,分別取AE、BF的中點M、N,連接OM、ON,在AB上截取AH=AM,連接OH,過C作CP⊥AF于P,
∵四邊形ABCD是菱形,
∴O是BD的中點,也是AC的中點,
∴OM=CE,ON=DF,
∵CE=DF,
∴OM=ON,
∵AC平分∠DAB,
∴∠DAC=∠BAC,
∵AO=AO,
∴△AMO≌△AHO,
∴OM=OH,∠AMO=∠AHO,
∴OM=OH=ON,
∴∠OHN=∠ONH,
∵∠AHO+∠OHN=180°,
∴∠AMO+∠ONH=180,
∵OM∥EC,ON∥DF,
∴∠AMO=∠AEC,∠ONH=∠GFA,
∴∠AEC+∠GFA=180°,
∴∠DAB+∠EGF=180°,
∵∠CGF=30°,
∴∠EGF=150°,
∴∠DAB=30°,
∵AD∥BC,
∴∠CBF=∠DAB=30°,
∵AB=BC=6,
∴CP=BC=3,
∴菱形ABCD的面積=ABCP=6×3=18,
故答案為:18.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題8分)如圖,在五邊形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.
(1)求證:△ABC≌△AED;
(2)當(dāng)∠B=140°時,求∠BAE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=4.41cm,BC=8.83cm,P是BC上一動點,連接AP,設(shè)P,C兩點間的距離為xcm,P,A兩點間的距離為ycm.(當(dāng)點P與點C重合時,x的值為0)小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.下面是小東的探究過程,請補(bǔ)充完整:
(1)通過取點、畫圖、測量,得到了x與y的幾組值,如表:
x/cm | 0 | 0.43 | 1.00 | 1.50 | 1.85 | 2.50 | 3.60 | 4.00 | 4.30 | 5.00 | 5.50 | 6.00 | 6.62 | 7.50 | 8.00 | 8.83 |
y/cm | 7.65 | 7.28 | 6.80 | 6.39 | 6.11 | 5.62 | 4.87 |
| 4.47 | 4.15 | 3.99 | 3.87 | 3.82 | 3.92 | 4.06 | 4.41 |
(說明:補(bǔ)全表格時相關(guān)數(shù)值保留一位小數(shù))
(2)建立平面直角坐標(biāo)系,描出以補(bǔ)全后的表中各對對應(yīng)值為坐標(biāo)的點,畫出該函數(shù)的圖象;
(3)結(jié)合畫出的函數(shù)圖象,解決問題:當(dāng)PA=PC時,PC的長度約為 cm.(結(jié)果保留一位小數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為解決部分市民冬季集中取暖問題,需鋪設(shè)一條長4000米的管道,為盡量減少施工對交通造成的影響,施工時“…”,設(shè)實際每天鋪設(shè)管道x米,則可得方程=20,根據(jù)此情景,題中用“…”表示的缺失的條件應(yīng)補(bǔ)為( 。
A. 每天比原計劃多鋪設(shè)10米,結(jié)果延期20天完成
B. 每天比原計劃少鋪設(shè)10米,結(jié)果延期20天完成
C. 每天比原計劃多鋪設(shè)10米,結(jié)果提前20天完成
D. 每天比原計劃少鋪設(shè)10米,結(jié)果提前20天完成
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,三個頂點的坐標(biāo)分別為、、.
(1)若與關(guān)于y軸成軸對稱,則三個頂點坐標(biāo)分別為_________,____________,____________;
(2)若P為x軸上一點,則的最小值為____________;
(3)計算的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:(一)如果我們能找到兩個實數(shù)x、y使且,這樣,那么我們就稱為“和諧二次根式”,則上述過程就稱之為化簡“和諧二次根式”.
例如:.
(二)在進(jìn)行二次根式的化簡與運算時,我們有時還會碰上如一樣的式子,其實我們還可以將其進(jìn)一步化簡:,那么我們稱這個過程為分式的分母有理化.
根據(jù)閱讀材料解決下列問題:
(1)化簡“和諧二次根式”:①___________,②___________;
(2)已知,,求的值;
(3)設(shè)的小數(shù)部分為,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩輛汽車沿同一路線趕赴距出發(fā)地480千米的目的地,乙車比甲車晚出發(fā)2小時(從甲車出發(fā)時開始計時),圖中折線OABC、線段DE分別表示甲、乙兩車所行路程y(千米)與時間x(小時)之間的函數(shù)關(guān)系對應(yīng)的圖像線段AB表示甲出發(fā)不足2小時因故停車檢修),請根據(jù)圖像所提供的信息,解決如下問題:
(1)求乙車所行路程y與時間x的函數(shù)關(guān)系式;
(2)求兩車在途中第二次相遇時,它們距出發(fā)地的路程;
(3)乙車出發(fā)多長時間,兩車在途中第一次相遇?(寫出解題過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在陽光下,小東同學(xué)測得一根長為米的竹竿的影長為米.
同一時刻米的竹竿的影長為________米.
同一時刻小東在測量樹的高度時,發(fā)現(xiàn)樹的影子不全落在地面上,有一部分落在操場的第一級臺階上,測得落在第一級臺階上的影子長為米,第一級臺階的高為米,落在地面上的影子長為米,則樹的高度為________米.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com