【題目】在等邊中,點(diǎn)在上,點(diǎn)在的延長線上,且.試探索以下問題:
(1)當(dāng)點(diǎn)為的中點(diǎn)時,如圖1,求證:.
(2)如圖2,當(dāng)點(diǎn)不是的中點(diǎn)時,過點(diǎn)作,交于點(diǎn),求證:是等邊三角形.
(3)在(2)的條件下,與還相等嗎?請說明理由.
【答案】(1)證明見解析;(2)證明見解析;(3)ED=EC.
【解析】
(1)根據(jù)等邊三角形的性質(zhì)得出AB=AC=BC,∠ABC=∠ACB=∠A=60°,再由E是AB的中點(diǎn),AE=BE=BD,證出∠EDB=∠ECB,得出EC=ED;
(2)在△AEF中,只要證明有兩個內(nèi)角是60°即可;
(3)只要證明△DBE≌△EFC,即可推出結(jié)論.
解:(1)證明:∵△ABC是等邊三角形,
∴AB=AC=BC,
∠ABC=∠ACB=∠A=60o ,
∵E是AB的中點(diǎn),
∴AE=BE,∠ECB=∠ACB=30°,
∵AE=BD,
∴BE=BD,
∴∠EDB=∠DEB=∠ABC=30°,
∴∠EDB=∠ECB,
∴EC=ED.
(2)∵EF∥BC,
∴∠AEF=∠ABC=60 o,∠AFE=∠ACB=60°,
∴△AEF是等邊三角形,
(3)ED=EC.理由如下:
由(2)得:△AEF是等邊三角形
∴∠AFE=∠ABC=60°,AE=EF=AF
∴∠EFC=∠DBE=120°,
又∵AE=BD,AB=AC,
∴BD=EF,BE=FC,
∴△DBE≌△EFC(SAS),
∴ED=EC.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】按下列要求畫圖,并回答問題.
如圖,已知∠ABC.
(1)在射線BC上戳取BD=BA,連接AD;
(2)畫∠ABD的平分線交線段AD于點(diǎn)M.
回答問題:線段AM和線段DM的大小關(guān)系是:AM DM.∠AMB的度數(shù)為 度.(精確到1度).
(友情提醒:截取用圓規(guī),并保留痕跡:畫完圖要下結(jié)論)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:有一個內(nèi)角為90°,且對角線相等的四邊形稱為“不完全矩形”.
(1)①如圖1,在不完全矩形中,,若,,則____;
②如圖2,在平面直角坐標(biāo)系中,,,若整點(diǎn)使得四邊形是不完全矩形,則點(diǎn)的坐標(biāo)是_____;(整點(diǎn)指橫坐標(biāo)、縱坐標(biāo)都為整數(shù)的點(diǎn))
(2)如圖3,在正方形中,點(diǎn),分別是,上的點(diǎn),且,求證:四邊形是不完全矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某路公交車從起點(diǎn)經(jīng)過A、B、C、D站到達(dá)終點(diǎn),一路上下乘客如下表所示。(用正數(shù)表示上車的人數(shù),負(fù)數(shù)表示下車的人數(shù))
起點(diǎn) | A | B | C | D | 終點(diǎn) | |
上車的人數(shù) | 18 | 15 | 12 | 7 | 5 | 0 |
下車的人數(shù) | 0 | -3 | -4 | -10 | -11 |
(1)到終點(diǎn)下車還有_________ 人;
(2)車行駛在那兩站之間車上的乘客最多?_______站和________站;
(3)若每人乘坐一站需買票1元,問該車出車一次能收入多少錢?寫出算式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,正方形網(wǎng)格中的每個小正方形的邊長都是1,每個小正方形的頂點(diǎn)叫作格點(diǎn).△ABC的三個頂點(diǎn)A,B,C都在格點(diǎn)上,將△ABC繞點(diǎn)A按順時針方向旋轉(zhuǎn)90°得到△AB′C′.
(1)在正方形網(wǎng)格中,畫出△AB'C′;
(2)畫出△AB′C′向左平移4格后的△A′B″C″;
(3)計(jì)算線段AB在變換到AB′的過程中掃過區(qū)域的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A坐標(biāo)為(6,0),點(diǎn)B在y軸的正半軸上,且=240.
(1)求點(diǎn)B坐標(biāo);
(2)若點(diǎn)P從B出發(fā)沿y軸負(fù)半軸方向運(yùn)動,速度每秒2個單位,運(yùn)動時間t秒,△AOP的面積為S,求S與t的關(guān)系式,并直接寫出t的取值范圍;
(3)在(2)的條件下,若S△AOP:S△ABP=1:3,且S△AOP+S△ABP=S△AOB,在線段AB的垂直平分線上是否存在點(diǎn)Q,使得△AOQ的面積與△BPQ的面積相等?若存在,求出Q點(diǎn)坐標(biāo);若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,以點(diǎn)A為圓心,AC為半徑,作⊙A交AB于點(diǎn)D,交CA的延長線于點(diǎn)E,過點(diǎn)E作AB的平行線EF交⊙A于點(diǎn)F,連接AF、BF,DF.
(1)試探究BF與AF位置關(guān)系,并說明理由;
(2)當(dāng)∠CAB等于多少度時,四邊形ADEF為菱形?請給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)你把紙對折一次時,可以得到2層,對折2次時可以得到4層,對折3次時可以得到8層,照這樣折下去:
(1)你能發(fā)現(xiàn)層數(shù)與折紙次數(shù)的關(guān)系嗎?
(2)計(jì)算對折5次時的層數(shù);
(3)如果每層紙的厚度是0.05毫米,求對折10次之后紙的總厚度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】類似乘方,我們把求若干個相同的不為零的有理數(shù)的除法運(yùn)算叫做“除方”如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等,并將2÷2÷2記作2③,讀作“2的圈3次方”;(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)記作(﹣3)④,讀作“﹣3的圈4次方”.
(1)直接寫出結(jié)果:2③= ,(﹣3)④= ,()⑤= ,
(2)計(jì)算:24÷23+(﹣8)×2③
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com