二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,給出下列結(jié)論:
①b2-4ac>0;
②2a+b<0;  
③4a-2b+c=0;
④a:b:c=-1:2:3.
其中正確的個(gè)數(shù)是( 。
分析:根據(jù)二次函數(shù)與x軸的交點(diǎn)的個(gè)數(shù)即可判斷①;根據(jù)對(duì)稱軸即可得出-
b
2a
=1,求出即可判斷②;把x=-2代入二次函數(shù)的解析式,再結(jié)合圖象即可判斷③;根據(jù)二次函數(shù)與x軸的交點(diǎn)坐標(biāo),設(shè)y=ax2+bx+c=a(x-3)(x+1),用a把b、c表示出來(lái),代入求出即可判斷④.
解答:解:∵二次函數(shù)y=ax2+bx+c(a≠0)的圖象和x軸有兩個(gè)交點(diǎn),
∴b2-4ac>0,∴①正確;
∵二次函數(shù)的對(duì)稱軸是直線x=1,
即二次函數(shù)的頂點(diǎn)的橫坐標(biāo)為x=-
b
2a
=1,
∴2a+b=0,∴②錯(cuò)誤;
把x=-2代入二次函數(shù)的解析式得:y=4a-2b+c,
從圖象可知,當(dāng)x=-2時(shí),y<0,
即4a-2b+c<0,∴③錯(cuò)誤;
∵二次函數(shù)的圖象和x軸的一個(gè)交點(diǎn)時(shí)(-1,0),對(duì)稱軸是直線x=1,
∴另一個(gè)交點(diǎn)的坐標(biāo)是(3,0),
∴設(shè)y=ax2+bx+c=a(x-3)(x+1)=ax2-2ax-3a,
即a=a,b=-2a,c=-3a,
∴a:b:c=a:(-2a):(-3a)=-1:2:3,∴④正確;
故選B.
點(diǎn)評(píng):本題考查了二次函數(shù)的圖象與系數(shù)的關(guān)系,當(dāng)b2-4ac>0時(shí),二次函數(shù)的圖象與x軸有兩個(gè)交點(diǎn),當(dāng)b2-4ac=0時(shí),二次函數(shù)的圖象與x軸有一個(gè)交點(diǎn),當(dāng)b2-4ac<0時(shí),二次函數(shù)的圖象與x軸沒有交點(diǎn),二次函數(shù)的對(duì)稱軸是直線x=1時(shí),二次函數(shù)的頂點(diǎn)的橫坐標(biāo)是x=-
b
2a
=1.用了數(shù)形結(jié)合思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于A(-3,0)、B兩點(diǎn),與y軸交于精英家教網(wǎng)點(diǎn)C(0,
3
)
,當(dāng)x=-4和x=2時(shí),二次函數(shù)y=ax2+bx+c(a≠0)的函數(shù)值y相等,連接AC、BC.
(1)求實(shí)數(shù)a,b,c的值;
(2)若點(diǎn)M、N同時(shí)從B點(diǎn)出發(fā),均以每秒1個(gè)單位長(zhǎng)度的速度分別沿BA、BC邊運(yùn)動(dòng),其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),當(dāng)運(yùn)動(dòng)時(shí)間為t秒時(shí),連接MN,將△BMN沿MN翻折,B點(diǎn)恰好落在AC邊上的P處,求t的值及點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,拋物線的對(duì)稱軸上是否存在點(diǎn)Q,使得以B,N,Q為頂點(diǎn)的三角形與△ABC相似?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

二次函數(shù)y=ax2+bx+c,當(dāng)x=
12
時(shí),有最大值25,而方程ax2+bx+c=0的兩根α、β,滿足α33=19,求a、b、c.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如果二次函數(shù)y=ax2+bx+c的圖象的頂點(diǎn)坐標(biāo)是(2,4),且直線y=x+4依次與y軸和拋物線相交于P、Q、R三點(diǎn),PQ:QR=1:3,求這個(gè)二次函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖為二次函數(shù)y=ax2+bx+c(a≠0)的圖象,則下列說(shuō)法:①abc>0;②2a+b=0;③a+b+c>0;④當(dāng)-1<x<3時(shí),y>0.其中正確結(jié)論的序號(hào)是
②③④
②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•孝感)二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的對(duì)稱軸是直線x=1,其圖象的一部分如圖所示.對(duì)于下列說(shuō)法:
①abc<0;②a-b+c<0;③3a+c<0;④當(dāng)-1<x<3時(shí),y>0.
其中正確的是
①②③
①②③
(把正確的序號(hào)都填上).

查看答案和解析>>

同步練習(xí)冊(cè)答案