【題目】解方程:

(1)(x+8)2=36;

(2)x(5x+4)-(4+5x)=0;

(3)x2+3=3(x+1);

(4)2x2x-1=0(用配方法).

【答案】(1)x1=-2,x2=-14;(2)x1=-,x2=1;(3)x1=0,x2=3;(4)x1=1,x2=-.

【解析】

(1)用直接開平方法求解即可;

(2)用提公因式法求解即可;

(3)先整理成一元二次方程的一般形式,然后用用提公因式法求解即可;

(4)用配方法求解即可;

(1)直接開平方,得x+8=±6,

x1=-2,x2=-14.

(2)提公因式,得(4+5x)(x-1)=0,

4+5x=0x-1=0.

x1=-,x2=1.

(3)整理,得x2-3x=0,

分解因式,得x(x-3)=0,

x=0x-3=0,

x1=0,x2=3.

(4)方程兩邊同除以2,得x2x=0,

移項,得x2x,

配方,得

開平方,得x=±

x1=1,x2=-.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABCAB=AC,AB為直徑作半圓O,BC于點D,連接AD過點DDEAC,垂足為點EAB的延長線于點F

1)求證EF是⊙O的切線

2)如果⊙O的半徑為5,sinADE=BF的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點,點.已知拋物線是常數(shù)),頂點為.

(Ⅰ)當(dāng)拋物線經(jīng)過點時,求頂點的坐標(biāo);

(Ⅱ)若點軸下方,當(dāng)時,求拋物線的解析式;

(Ⅲ) 無論取何值,該拋物線都經(jīng)過定點.當(dāng)時,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC,CABC,AC=4,在AB邊上取一點D,使AD=BC,作AD的垂直平分線,交AC邊于點F,交以AB為直徑的⊙OG,H,設(shè)BC=x.

(1)求證:四邊形AGDH為菱形;

(2)EF=y(tǒng),求y關(guān)于x的函數(shù)關(guān)系式;

(3)連結(jié)OF,CG.

①若△AOF為等腰三角形,求⊙O的面積;

②若BC=3,則CG+9=______.(直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點Py軸的正半軸上,⊙Px軸于B、C兩點,以AC為直角邊作等腰RtACD,BD分別交y軸和⊙PE、F兩點,連接AC、FC

(1)求證:∠ACF=ADB

(2)若點ABD的距離為m,BF+CF=n,求線段CD的長;

(3)當(dāng)⊙P的大小發(fā)生變化而其他條件不變時,的值是否發(fā)生變化?若不發(fā)生變化,請求出其值;若發(fā)生變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖∠AABCC=45°,EF分別是AB、BC的中點,則下列結(jié)論,①EFBD,EFBD,③∠ADCBEF+BFEADDC,其中正確的是( 。

A. ①②③④ B. ①②③ C. ①②④ D. ②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,直線ykx+2與坐標(biāo)軸交于A、B兩點,OA=4,點Cx軸正半軸上的點,且OCOB,過點CAB的垂線,交y軸于點D,拋物線yax2+bx+cA、B、C三點.

(1)求拋物線函數(shù)關(guān)系式;

(2)如圖②,點P是射線BA上一動點(不與點B重合),連接OP,過點OOP的垂線交直線CD于點Q.求證:OPOQ

(3)如圖③,在(2)的條件下,分別過P、Q兩點作x軸的垂線,分別交x軸于點E、F,交拋物線于點MN,是否存在點P的位置,使以P、QM、N為頂點的四邊形為平行四邊形?如果存在,求出點P的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知經(jīng)過原點的拋物線軸的另一個交點為,現(xiàn)將拋物線向右平移個單位長度,所得拋物線與軸交于,與原拋物線交于點,設(shè)的面積為,則用表示=__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小晗家客廳裝有一種三位單極開關(guān),分別控制著A(樓梯)、B(客廳)、C(走廊)三盞電燈,在正常情況下,小晗按下任意一個開關(guān)均可打開對應(yīng)的一盞電燈,既可三盞、兩盞齊開,也可分別單盞開.因剛搬進新房不久,不熟悉情況.

(1)若小晗任意按下一個開關(guān),正好樓梯燈亮的概率是多少?

(2)若任意按下一個開關(guān)后,再按下另兩個開關(guān)中的一個,則正好客廳燈和走廊燈同時亮的概率是多少?請用樹狀圖或列表法加以說明.

查看答案和解析>>

同步練習(xí)冊答案