【題目】如圖,拋物線(xiàn)與x軸交于A、B兩點(diǎn),B點(diǎn)坐標(biāo)為(3,0),與y軸交于點(diǎn)C(0,﹣3)
(1)求拋物線(xiàn)的解析式;
(2)點(diǎn)P在拋物線(xiàn)位于第四象限的部分上運(yùn)動(dòng),當(dāng)四邊形ABPC的面積最大時(shí),求點(diǎn)P的坐標(biāo)和四邊形ABPC的最大面積.
(3)直線(xiàn)l經(jīng)過(guò)A、C兩點(diǎn),點(diǎn)Q在拋物線(xiàn)位于y軸左側(cè)的部分上運(yùn)動(dòng),直線(xiàn)m經(jīng)過(guò)點(diǎn)B和點(diǎn)Q,是否存在直線(xiàn)m,使得直線(xiàn)l、m與x軸圍成的三角形和直線(xiàn)l、m與y軸圍成的三角形相似?若存在,求出直線(xiàn)m的解析式,若不存在,請(qǐng)說(shuō)明理由.
【答案】(1);(2)P點(diǎn)坐標(biāo)為(,)時(shí),四邊形ABPC的面積最大,最大面積為;(3)存在,.
【解析】
試題分析:(1)由B、C兩點(diǎn)的坐標(biāo),利用待定系數(shù)法可求得拋物線(xiàn)的解析式;
(2)連接BC,則△ABC的面積是不變的,過(guò)P作PM∥y軸,交BC于點(diǎn)M,設(shè)出P點(diǎn)坐標(biāo),可表示出PM的長(zhǎng),可知當(dāng)PM取最大值時(shí)△PBC的面積最大,利用二次函數(shù)的性質(zhì)可求得P點(diǎn)的坐標(biāo)及四邊形ABPC的最大面積;
(3)設(shè)直線(xiàn)m與y軸交于點(diǎn)N,交直線(xiàn)l于點(diǎn)G,由于∠AGP=∠GNC+∠GCN,所以當(dāng)△AGB和△NGC相似時(shí),必有∠AGB=∠CGB=90°,則可證得△AOC≌△NOB,可求得ON的長(zhǎng),可求出N點(diǎn)坐標(biāo),利用B、N兩的點(diǎn)坐標(biāo)可求得直線(xiàn)m的解析式.
試題解析:
(1)把B、C兩點(diǎn)坐標(biāo)代入拋物線(xiàn)解析式可得:,解得:,∴拋物線(xiàn)解析式為;
(2)如圖1,連接BC,過(guò)Py軸的平行線(xiàn),交BC于點(diǎn)M,交x軸于點(diǎn)H,
在中,令y=0可得,解得x=﹣1或x=3,∴A點(diǎn)坐標(biāo)為(﹣1,0),∴AB=3﹣(﹣1)=4,且OC=3,∴S△ABC=ABOC=×4×3=6,∵B(3,0),C(0,﹣3),∴直線(xiàn)BC解析式為y=x﹣3,設(shè)P點(diǎn)坐標(biāo)為(x,),則M點(diǎn)坐標(biāo)為(x,x﹣3),∵P點(diǎn)在第四限,∴PM= =,∴S△PBC=PMOH+PMHB=PM(OH+HB)=PMOB=PM,∴當(dāng)PM有最大值時(shí),△PBC的面積最大,則四邊形ABPC的面積最大,∵PM==,∴當(dāng)x=時(shí),PMmax=,則S△PBC==,此時(shí)P點(diǎn)坐標(biāo)為(,),S四邊形ABPC=S△ABC+S△PBC=6+=,即當(dāng)P點(diǎn)坐標(biāo)為(,)時(shí),四邊形ABPC的面積最大,最大面積為;
(3)如圖2,設(shè)直線(xiàn)m交y軸于點(diǎn)N,交直線(xiàn)l于點(diǎn)G,則∠AGP=∠GNC+∠GCN,當(dāng)△AGB和△NGC相似時(shí),必有∠AGB=∠CGB,又∠AGB+∠CGB=180°,∴∠AGB=∠CGB=90°,∴∠ACO=∠OBN,在Rt△AON和Rt△NOB中,∵∠AOC=∠NOB,OC=OB,∠ACO=∠NBO,∴Rt△AON≌Rt△NOB(ASA),∴ON=OA=1,∴N點(diǎn)坐標(biāo)為(0,﹣1),設(shè)直線(xiàn)m解析式為y=kx+d,把B、N兩點(diǎn)坐標(biāo)代入可得,解得:,∴直線(xiàn)m解析式為,即存在滿(mǎn)足條件的直線(xiàn)m,其解析式為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AB=AC,BD平分∠ABC時(shí)
(1)若CE⊥BD于E,①∠ECD=___________0;②求證:BD=2EC;
(2)如圖,點(diǎn)P是射線(xiàn)BA上A點(diǎn)右邊一動(dòng)點(diǎn),以CP為斜邊作等腰直角△CPF,其中∠F=90°,點(diǎn)Q為∠FPC與∠PFC的角平分線(xiàn)的交點(diǎn).當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),點(diǎn)Q是否一定在射線(xiàn)BD上?若在,請(qǐng)證明,若不在;請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)x1,x2是一元二次方程x2﹣2x﹣5=0的兩根,則x12+x22的值為( )
A. 6B. 8C. 14D. 16
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于二次函數(shù) y=(x-1)2+2 的圖象,下列說(shuō)法正確的是( )
A. 開(kāi)口向下 B. 頂點(diǎn)坐標(biāo)是(1,2) C. 對(duì)稱(chēng)軸是 x=-1 D. 有最大值是 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△AOB中,∠AOB為直角,OA=6,OB=8,半徑為2的動(dòng)圓圓心Q從點(diǎn)O出發(fā),沿著OA方向以1個(gè)單位長(zhǎng)度/秒的速度勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿著AB方向也以1個(gè)單位長(zhǎng)度/秒的速度勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(0<t≤5)以P為圓心,PA長(zhǎng)為半徑的⊙P與AB、OA的另一個(gè)交點(diǎn)分別為C、D,連結(jié)CD、QC.
(1)當(dāng)t為何值時(shí),點(diǎn)Q與點(diǎn)D重合?
(2)當(dāng)⊙Q經(jīng)過(guò)點(diǎn)A時(shí),求⊙P被OB截得的弦長(zhǎng).
(3)若⊙P與線(xiàn)段QC只有一個(gè)公共點(diǎn),求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,E為等腰直角△ABC的邊AB上的一點(diǎn),要使AE=3,BE=1,P為AC上的動(dòng)點(diǎn),則PB+PE的最小值為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)正方形的邊長(zhǎng)如果增加2cm,面積則增加32cm2,則這個(gè)正方形的邊長(zhǎng)為( )
A. 5cm B. 6cm C. 7cm D. 8cm
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com