【題目】如圖,E為等腰直角△ABC的邊AB上的一點(diǎn),要使AE=3,BE=1,P為AC上的動(dòng)點(diǎn),則PB+PE的最小值為____________.
【答案】5
【解析】試題分析:作點(diǎn)B關(guān)于AC的對(duì)稱點(diǎn)F,構(gòu)建直角三角形,根據(jù)最短路徑可知:此時(shí)PB+PE的值最小,接下來要求出這個(gè)最小值,即求EF的長即可,因此要先求AF的長,證明△ADF≌△CDB,可以解決這個(gè)問題,從而得出EF=5,則PB+PE的最小值為5.
解:如圖,過B作BD⊥AC,垂足為D,并截取DF=BD,連接EF交AC于P,連接PB、AF,則此時(shí)PB+PE的值最小,
∵△ABC是等腰直角三角形,
∴AB=CB,∠ABC=90°,AD=DC,
∴∠BAC=∠C=45°,
∵∠ADF=∠CDB,
∴△ADF≌△CDB,
∴AF=BC,∠FAD=∠C=45°,
∵AE=3,BE=1,
∴AB=BC=4,
∴AF=4,
∵∠BAF=∠BAC+∠FAD=45°+45°=90°,
∴由勾股定理得:EF===5,
∵AC是BF的垂直平分線,
∴BP=PF,
∴PB+PE=PF+PE=EF=5,
故答案為:5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列事件中,是確定事件的是( 。
A.三角形任意兩邊之和小于第三邊
B.365人中一定至少有兩人的生日相同
C.龍口市下周一定會(huì)下雨
D.打開電視機(jī),正在播放廣告
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸交于A、B兩點(diǎn),B點(diǎn)坐標(biāo)為(3,0),與y軸交于點(diǎn)C(0,﹣3)
(1)求拋物線的解析式;
(2)點(diǎn)P在拋物線位于第四象限的部分上運(yùn)動(dòng),當(dāng)四邊形ABPC的面積最大時(shí),求點(diǎn)P的坐標(biāo)和四邊形ABPC的最大面積.
(3)直線l經(jīng)過A、C兩點(diǎn),點(diǎn)Q在拋物線位于y軸左側(cè)的部分上運(yùn)動(dòng),直線m經(jīng)過點(diǎn)B和點(diǎn)Q,是否存在直線m,使得直線l、m與x軸圍成的三角形和直線l、m與y軸圍成的三角形相似?若存在,求出直線m的解析式,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】春節(jié)期間上映的第一部中國科幻電影《流浪地球》,斬獲約4 670 000 000元票房,將4 670 000 000用科學(xué)記數(shù)法表示是( 。
A. 4.67×1010B. 0.467×1010C. 0.467×109D. 4.67×109
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)P的坐標(biāo)為(,),點(diǎn)Q的坐標(biāo)為(,),且,,若P,Q為某個(gè)矩形的兩個(gè)頂點(diǎn),且該矩形的邊均與某條坐標(biāo)軸垂直,則稱該矩形為點(diǎn)P,Q的“相關(guān)矩形”.下圖為點(diǎn)P,Q 的“相關(guān)矩形”的示意圖.
(1)已知點(diǎn)A的坐標(biāo)為(1,0).
①若點(diǎn)B的坐標(biāo)為(3,1)求點(diǎn)A,B的“相關(guān)矩形”的面積;
②點(diǎn)C在直線x=3上,若點(diǎn)A,C的“相關(guān)矩形”為正方形,求直線AC的表達(dá)式;
(2)⊙O的半徑為,點(diǎn)M的坐標(biāo)為(m,3).若在⊙O上存在一點(diǎn)N,使得點(diǎn)M,N的“相關(guān)矩形”為正方形,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸交于點(diǎn)A,點(diǎn)B,與y軸交于點(diǎn)C,點(diǎn)D與點(diǎn)C關(guān)于x軸對(duì)稱,點(diǎn)P是x軸上的一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m,0),過點(diǎn)P作x軸的垂線l交拋物線于點(diǎn)Q.
(1)求點(diǎn)A、點(diǎn)B、點(diǎn)C的坐標(biāo);
(2)求直線BD的解析式;
(3)當(dāng)點(diǎn)P在線段OB上運(yùn)動(dòng)時(shí),直線l交BD于點(diǎn)M,試探究m為何值時(shí),四邊形CQMD是平行四邊形;
(4)在點(diǎn)P的運(yùn)動(dòng)過程中,是否存在點(diǎn)Q,使△BDQ是以BD為直角邊的直角三角形?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)軸上,若A點(diǎn)表示數(shù)﹣1,點(diǎn)B表示數(shù)2,A、B兩點(diǎn)之間的距離為
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com