【題目】已知如圖,正方形的邊長(zhǎng)為4,取邊上的中點(diǎn),連接,過點(diǎn)作于點(diǎn),連接,過點(diǎn)作于點(diǎn),交于點(diǎn),交于點(diǎn),則________.
【答案】1
【解析】
如圖,延長(zhǎng)DF交AB于P.首先證明EF:CF=1:4,由△ADP≌△BAN,推出BN=AP,DP=AM,由PE∥DC,推出PE:DC=EF:CF=1:4,推出PE=BP=1,再證明∠NCM=∠NMC即可解決問題;
解:如圖,延長(zhǎng)DF交AB于P.
∵四邊形ABCD是正方形, ∴AD=AB,∠ABN=∠DAP=90°,
∵AN⊥DP, ∴∠APD+∠PAH=90°,∠ANB+∠PAH=90°,
∴∠APD=∠ANB, ∴△ADP≌△BAN,
∴AN=DP,
∵BF⊥EC, ∴∠EBF+∠BEF=90°,∠BCE+∠BEC=90°,
∴∠EBF=∠BCE, ∴tan∠EBF=tan∠BCE=,
∵AB=BC,BE=AE, ∴tan∠EBF=tan∠BCE= ,
設(shè)EF=a,則BF=2a,CF=4a,
∵PE∥DC, ∴,
∵CD=4, ∴PE=1, ∵BE=2, ∴PE=PB=1,
∴PF=BE=1,AP=3,
在Rt△ADP中,,
∴DF=4,BN=AP=3,CN=1, ∴BC=DF, ∴∠DFC=∠DCF,
∵∠BCE+∠DCF=90°,∠FMH+∠DFC=90°,∠FMH=∠NMC,
∴∠NCM=∠NMC, ∴MN=CN=1.
故答案為1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中為真命題的是( 。
A.長(zhǎng)度為的三條線段若滿足,則這三條線段一定能組成三角形
B.一個(gè)三角形的三個(gè)內(nèi)角度數(shù)之比為3:4:5,則這個(gè)三角形是直角三角形
C.正六邊形的外角和大于正五邊形的外角和
D.若與相似,且周長(zhǎng)相等,則與全等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣x+2分別交x軸、y軸于點(diǎn)A、B.點(diǎn)C的坐標(biāo)是(﹣1,0),拋物線y=ax2+bx﹣2經(jīng)過A、C兩點(diǎn)且交y軸于點(diǎn)D.點(diǎn)P為x軸上一點(diǎn),過點(diǎn)P作x軸的垂線交直線AB于點(diǎn)M,交拋物線于點(diǎn)Q,連結(jié)DQ,設(shè)點(diǎn)P的橫坐標(biāo)為m(m≠0).
(1)求點(diǎn)A的坐標(biāo).
(2)求拋物線的表達(dá)式.
(3)當(dāng)以B、D、Q,M為頂點(diǎn)的四邊形是平行四邊形時(shí),求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知拋物線y=ax2+2x+c(a≠0),與y軸交于點(diǎn)A(0,6),與x軸交于點(diǎn)B(6,0).
(1)求這條拋物線的表達(dá)式及其頂點(diǎn)坐標(biāo);
(2)設(shè)點(diǎn)P是拋物線上的動(dòng)點(diǎn),若在此拋物線上有且只有三個(gè)P點(diǎn)使得△PAB的面積是定值S,求這三個(gè)點(diǎn)的坐標(biāo)及定值S.
(3)若點(diǎn)F是拋物線對(duì)稱軸上的一點(diǎn),點(diǎn)P是(2)中位于直線AB上方的點(diǎn),在拋物線上是否存在一點(diǎn)Q,使得P、Q、B、F為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)Q的坐標(biāo);若不存請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,對(duì)稱軸為直線的拋物線經(jīng)過點(diǎn)和.
(1)求拋物線解析式;
(2)設(shè)點(diǎn)是拋物線上一動(dòng)點(diǎn),且位于第四象限,四邊形是以為對(duì)角線的平行四邊形.
①求平行四邊形的面積與之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
②當(dāng)平行四邊形的面積為24時(shí),請(qǐng)判斷平行四邊形是否為菱形?
③是否存在點(diǎn),使平行四邊形為正方形?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象交軸于、兩點(diǎn),交軸于點(diǎn),點(diǎn)的坐標(biāo)為,頂點(diǎn)的坐標(biāo)為.
(1)求二次函數(shù)的解析式和直線的解析式;
(2)點(diǎn)是直線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)作軸垂線,交拋物線于點(diǎn),當(dāng)點(diǎn)在第一象限時(shí),求線段長(zhǎng)度的最大值;
(3)在拋物線上是否存在異于、的點(diǎn),使中邊上的高?若存在求出點(diǎn)的坐標(biāo);若不存在請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,正,B(3,0),C(7,0),過點(diǎn)作直線,,的橫坐標(biāo)( )
A.4B.C.D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】奇異果是新西蘭的特產(chǎn),其實(shí)它的祖籍在中國(guó),又名“獼猴桃”.2018年1月份至6月份我市某大型超市新西蘭品種的奇異果銷售價(jià)格y(元/盒)與月份x(1≤x≤6,且x為整數(shù))之間的函數(shù)關(guān)系如下表:
7月份至12月份奇異果的銷售價(jià)格y(元/盒)與月份x之間滿足函數(shù)關(guān)系式:y=2x+20(7≤x≤12且x為整數(shù)).該超市去年奇異果銷售數(shù)量z(盒)與月份x(1≤x≤12,且x為整數(shù))之間存在如圖所示的變化趨勢(shì).若去年該超市奇異果的進(jìn)價(jià)為每盒20元,銷售奇異果需要一名超市員工,該員工每月固定人工費(fèi)用為1500元.
(1)請(qǐng)觀察圖表中的數(shù)據(jù)信息直接寫出2018年1月份至6月份銷售價(jià)格y與x之間的函數(shù)關(guān)系式__ ,根據(jù)如圖所示的變化趨勢(shì),直接寫出去年每月銷售數(shù)量z與x之間滿足的函數(shù)關(guān)系式__ .
(2)求出去年每月該超市的利潤(rùn)w(元)與月份x之間滿足的函數(shù)關(guān)系式.(利潤(rùn)=收入成本費(fèi)用)
(3)從今年1月份開始,超市決定每賣出一盒奇異果,公司向希望工程捐款2元,奇異果的進(jìn)價(jià)為每盒26元,雖然今年1月份奇異果的銷售價(jià)格比去年12月份增加4元,但1月份銷售數(shù)量仍比去年12月份增加了0.4a%;2月份銷售價(jià)格在1月份的基礎(chǔ)上增加了0.5a%,由于其它水果陸續(xù)上市,2月份的銷售量與1月份持平,這樣2月份的利潤(rùn)達(dá)到了15780元,請(qǐng)參考以下數(shù)據(jù),求出整數(shù)a的值.(參考數(shù)據(jù):=2025,=2116,=2209)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)同時(shí)購(gòu)進(jìn)甲、乙兩種商品共100件,其進(jìn)價(jià)和售價(jià)如下表:
商品名稱 | 甲 | 乙 |
進(jìn)價(jià)(元/件) | 40 | 90 |
售價(jià)(元/件) | 60 | 120 |
設(shè)其中甲種商品購(gòu)進(jìn)x件,商場(chǎng)售完這100件商品的總利潤(rùn)為y元.
(Ⅰ)寫出y關(guān)于x的函數(shù)關(guān)系式;
(Ⅱ)該商場(chǎng)計(jì)劃最多投入8000元用于購(gòu)買這兩種商品,
①至少要購(gòu)進(jìn)多少件甲商品?
②若銷售完這些商品,則商場(chǎng)可獲得的最大利潤(rùn)是多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com