【題目】某商場(chǎng)同時(shí)購(gòu)進(jìn)甲、乙兩種商品共100件,其進(jìn)價(jià)和售價(jià)如下表:

商品名稱(chēng)

進(jìn)價(jià)(/)

40

90

售價(jià)(/)

60

120

設(shè)其中甲種商品購(gòu)進(jìn)x件,商場(chǎng)售完這100件商品的總利潤(rùn)為y元.

()寫(xiě)出y關(guān)于x的函數(shù)關(guān)系式;

()該商場(chǎng)計(jì)劃最多投入8000元用于購(gòu)買(mǎi)這兩種商品,

①至少要購(gòu)進(jìn)多少件甲商品?

②若銷(xiāo)售完這些商品,則商場(chǎng)可獲得的最大利潤(rùn)是多少元?

【答案】()()①至少要購(gòu)進(jìn)20件甲商品;②售完這些商品,則商場(chǎng)可獲得的最大利潤(rùn)是2800元.

【解析】

()根據(jù)總利潤(rùn)=(甲的售價(jià)-甲的進(jìn)價(jià))×甲的進(jìn)貨數(shù)量+(乙的售價(jià)-乙的進(jìn)價(jià))×乙的進(jìn)貨數(shù)量列關(guān)系式并化簡(jiǎn)即可得答案;()①根據(jù)總成本最多投入8000元列不等式即可求出x的范圍,即可得答案;②根據(jù)一次函數(shù)的增減性確定其最大值即可.

()根據(jù)題意得:

yx的函數(shù)關(guān)系式為

(),解得

∴至少要購(gòu)進(jìn)20件甲商品.

,

y隨著x的增大而減小

∴當(dāng)時(shí),有最大值,

∴若售完這些商品,則商場(chǎng)可獲得的最大利潤(rùn)是2800元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)拋物線(xiàn)x軸交于兩個(gè)不同的點(diǎn)A(-1,0)B(m,0),與y軸交于點(diǎn)C.且∠ACB=90°

(1)m的值和拋物線(xiàn)的解析式;

(2)已知點(diǎn)D(1,n )在拋物線(xiàn)上,過(guò)點(diǎn)A的直線(xiàn)交拋物線(xiàn)于另一點(diǎn)E.若點(diǎn)Px軸上,以點(diǎn)P、B、D為頂點(diǎn)的三角形與△AEB相似,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某服裝店同時(shí)購(gòu)進(jìn)甲、乙兩種款式的運(yùn)動(dòng)服共套,進(jìn)價(jià)和售價(jià)如表中所示,設(shè)購(gòu)進(jìn)甲款運(yùn)動(dòng)服套(為正整數(shù)),該服裝店售完全部甲、乙兩款運(yùn)動(dòng)服獲得的總利潤(rùn)為元.

運(yùn)動(dòng)服款式

甲款

乙款

進(jìn)價(jià)(元套)

售價(jià)(元套)

1)求的函數(shù)關(guān)系式;

2)該服裝店計(jì)劃投入萬(wàn)元購(gòu)進(jìn)這兩款運(yùn)動(dòng)服,則至少購(gòu)進(jìn)多少套甲款運(yùn)動(dòng)服?若售完全部的甲、乙兩款運(yùn)動(dòng)服,則服裝店可獲得的最大利潤(rùn)是多少元?

3)在(2)的條件下,若服裝店購(gòu)進(jìn)甲款運(yùn)動(dòng)服的進(jìn)價(jià)降低元(其中),且最多購(gòu)進(jìn)套甲款運(yùn)動(dòng)服,若服裝店保持這兩款運(yùn)動(dòng)服的售價(jià)不變,請(qǐng)你設(shè)計(jì)出使該服裝店獲得最大銷(xiāo)售利潤(rùn)的購(gòu)進(jìn)方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】鐘南山院士談到防護(hù)新型冠狀病毒肺炎時(shí)說(shuō):“我們需要重視防護(hù),但也不必恐慌,盡量少去人員密集的場(chǎng)所,出門(mén)戴口罩,在室內(nèi)注意通風(fēng),勤洗手,多運(yùn)動(dòng),少熬夜.”某社區(qū)為了加強(qiáng)社區(qū)居民對(duì)新型冠狀病毒肺炎防護(hù)知識(shí)的了解,通過(guò)微信群宣傳新型冠狀病毒 肺炎的防護(hù)知識(shí),并鼓勵(lì)社區(qū)居民在線(xiàn)參與作答《2020 年新型冠狀病毒防治全國(guó)統(tǒng)一考試 (全國(guó)卷)》試卷(滿(mǎn)分 100 分),社區(qū)管理員隨機(jī)從甲、乙兩個(gè)小區(qū)各抽取 20 名人員的 答卷成績(jī),并對(duì)他們的成績(jī)(單位:分)進(jìn)行統(tǒng)計(jì)、分析,過(guò)程如下:

收集數(shù)據(jù)

甲小區(qū):85 80 95 100 90 95 85 65 75 85 90 90 70 90 100 80 80 90 95 75

乙小區(qū):80 60 80 95 65 100 90 85 85 80 95 75 80 90 70 80 95 75 100 90

整理數(shù)據(jù)

60≤x≤70

70x≤80

80x≤90

90x≤100

甲小區(qū)

2

5

8

5

乙小區(qū)

3

7

5

5

分析數(shù)據(jù)

平均數(shù)

中位數(shù)

眾數(shù)

甲小區(qū)

85.75

87.5

a

乙小區(qū)

83.5

b

80

應(yīng)用數(shù)據(jù)

1)填空:a = ,b =___,

2)若甲小區(qū)共有 800 人參與答卷,請(qǐng)估計(jì)甲小區(qū)成績(jī)大于 90 分的人數(shù)為_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格中,點(diǎn)A、B均為格點(diǎn).

()AB的長(zhǎng)等于_____

()若點(diǎn)C是以AB為底邊的等腰直角三角形的頂點(diǎn),點(diǎn)D在邊AC上,且滿(mǎn)足SABD=SABC.請(qǐng)?jiān)谌鐖D所示的網(wǎng)格中,用無(wú)刻度的直尺,畫(huà)出線(xiàn)段BD,并簡(jiǎn)要說(shuō)明點(diǎn)D的位置是如何找到的(不要求證明)______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年南充市有縣區(qū)申報(bào)了長(zhǎng)壽之鄉(xiāng),并獲認(rèn)定.上月某中學(xué)九(1)班學(xué)生社會(huì)實(shí)踐前往該區(qū)一鄉(xiāng)鎮(zhèn)調(diào)研進(jìn)入老齡化社會(huì)的數(shù)據(jù).按國(guó)際通行標(biāo)準(zhǔn),當(dāng)一個(gè)國(guó)家或地區(qū)6060歲以上人口達(dá)到人口總數(shù)的10%,或6565歲以上人口達(dá)到人口總數(shù)的7%,這個(gè)區(qū)域進(jìn)入老齡化社會(huì).被調(diào)查的800人年齡情況統(tǒng)計(jì)圖如下:

1)該鄉(xiāng)鎮(zhèn)是否進(jìn)入老齡化社會(huì)?并說(shuō)明理由.

2)請(qǐng)你為該鄉(xiāng)鎮(zhèn)提一條合理化建議.

3)在該鄉(xiāng)鎮(zhèn)60歲及以上人群中隨機(jī)抽取1人,求年齡不低于70歲的概率。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在全國(guó)初中數(shù)學(xué)聯(lián)賽中,將參賽兩個(gè)班學(xué)生的成績(jī)(得分均為整數(shù))進(jìn)行整理后分成五組,繪制出如下的頻率分布直方圖(如圖所示),已知圖中從左到右的第一、第三、第四、第五小組的頻率分別是025、015010、010,第二組的頻數(shù)是40

1)第二小組的頻率是_____,并補(bǔ)全這個(gè)頻率分布直方圖;

2)這兩個(gè)班參賽的學(xué)生人數(shù)是_________;

3)這兩個(gè)班參賽學(xué)生的成績(jī)的中位數(shù)落在第______組內(nèi).(不必說(shuō)明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,,,上一點(diǎn),連接

1)如圖1,若延長(zhǎng)線(xiàn)上一點(diǎn),垂直,求證:

2)過(guò)點(diǎn),為垂足,連接并延長(zhǎng)交于點(diǎn).

①如圖2,若,求證:

②如圖3,若的中點(diǎn),直接寫(xiě)出的值(用含的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(操作發(fā)現(xiàn))如圖(1),在△OAB和△OCD中,OAOBOCOD,∠AOB=∠COD45°,連接AC,BD交于點(diǎn)M

ACBD之間的數(shù)量關(guān)系為   

AMB的度數(shù)為   ;

(類(lèi)比探究)如圖(2),在△OAB和△OCD中,∠AOB=∠COD90°,∠OAB=∠OCD30°,連接AC,交BD的延長(zhǎng)線(xiàn)于點(diǎn)M.請(qǐng)計(jì)算的值及∠AMB的度數(shù);

(實(shí)際應(yīng)用)如圖(3),是一個(gè)由兩個(gè)都含有30°角的大小不同的直角三角板ABC、DCE組成的圖形,其中∠ACB=∠DCE90°,∠A=∠D30°且DE、B在同一直線(xiàn)上,CE1,BC ,求點(diǎn)A、D之間的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案