【題目】在直角坐標系中,正,B(3,0),C(7,0),過點作直線,,的橫坐標( )
A.4B.C.D.5
【答案】C
【解析】
過N點作ND∥BC交AB于D點,可證△DMN≌△BMO,可得ND=OB=3,BM=DM;可證△AND是等邊三角形,可求得AD,BM,過M點作ME⊥OC與E點,求出BE即可;
如圖:過N點作ND∥BC交AB于D點,過M點作ME⊥OC與E點,則OB=3,BC=4
∵B(3,0),C(7,0),△ABC是正三角形
∴OB=3,AB=BC=4,∠ABC=∠A=60°
∵ND∥BC
∴∠DNM=∠MOB,
又∵∠OMB=∠NMD,OM=MN
∴△DMN≌△BMO
∴ND=OB=3,BM=DM
∵∠AND=∠ABC=60°,∠A=60°
∴△AND是等邊三角形
∴AD=DN=3
∴BD=1
∴BM=DM=
∵ME⊥OC
∴∠MEB=90°,∠BME=30°
∴BE=
∴OE=OB+BE=
故選:C
科目:初中數(shù)學 來源: 題型:
【題目】小王電子產(chǎn)品專柜以20元/副的價格批發(fā)了某新款耳機,在試銷的60天內(nèi)整理出了銷售數(shù)據(jù)如下
銷售數(shù)據(jù)(第x天) | 售價(元) | 日銷售量(副) |
1≤x<35 | x+30 | 100﹣2x |
35≤x≤60 | 70 | 100﹣2x |
(1)若試銷階段每天的利潤為W元,求出W與x的函數(shù)關系式;
(2)請問在試銷階段的哪一天銷售利潤W可以達到最大值?最大值為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2016年3月,我市某中學舉行了“愛我中國朗誦比賽”活動,根據(jù)學生的成績劃分為A、B、C、D四個等級,并繪制了不完整的兩種統(tǒng)計圖.根據(jù)圖中提供的信息,回答下列問題:
(1)參加朗誦比賽的學生共有 人,并把條形統(tǒng)計圖補充完整;
(2)扇形統(tǒng)計圖中,m= ,n= ;C等級對應扇形有圓心角為 度;
(3)學校欲從獲A等級的學生中隨機選取2人,參加市舉辦的朗誦比賽,請利用列表法或樹形圖法,求獲A等級的小明參加市朗誦比賽的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“精準扶貧”這是新時期黨和國家扶貧工作的精髓和亮點.某校團委隨機抽取部分學生,對他們是否了解關于“精準扶貧”的情況進行調(diào)查,調(diào)查結果有三種:A、了解很多;B、了解一點;C、不了解.團委根據(jù)調(diào)查的數(shù)據(jù)進行整理,繪制了尚不完整的統(tǒng)計圖如下,圖1中C區(qū)域的圓心角為36°,請根據(jù)統(tǒng)計圖中的相關的信息,解答下列問題:
(1)求本次活動共調(diào)查了 名學生;圖1中,B區(qū)域的圓心角度是 ;在抽取的學生中調(diào)查結果的中位數(shù)落在 區(qū)域里.
(2)補全條形統(tǒng)計圖.
(3)若該校有1200名學生,請估算該校不是了解很多的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,O是AB上一點,以O為圓心,OA為半徑作圓與BC相切于點E,交AB于點D,連接DE,作∠DEA的平分線EF交⊙O于點F,連接AF.
(1)求證:AE平分∠BAC
(2)若sin∠EFA=,AF=,求線段AC的長
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正六邊形ABCDEF內(nèi)接于⊙O,在弧AB上取點P,連接AP,BP,過點D作DQ∥AP交⊙O于點Q,連接BQ. 已知BP=1,BQ=3,PQ的長為 ,AP的長為_____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】感知:如圖,在中,,點分別在邊上,連接點分別為的中點,則與的數(shù)量關系是: .
探究:把繞點順時針方向旋轉,如圖,連接
證明:
的度數(shù)為 _
應用:把繞點在平面內(nèi)自由旋轉,若面積的最大值為___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將一個正方形紙片放置在平面直角坐標系中,點,點,,點.動點在邊上,點在邊上,沿折疊該紙片,使點的對應點始終落在邊上(點不與重合),點落在點處,與交于點.
(Ⅰ)如圖①,當時,求點的坐標;
(Ⅱ)如圖②,當點落在的中點時,求點的坐標;
(Ⅲ)隨著點在邊上位置的變化,的周長是否發(fā)生變化?如變化,簡述理由;如不變,直接寫出其值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com