【題目】在函數(shù)學(xué)習(xí)中,我們經(jīng)歷了“確定函數(shù)表達(dá)式﹣﹣利用函數(shù)圖象研究其性質(zhì)﹣﹣運(yùn)用函數(shù)解決問題”的學(xué)習(xí)過程.在畫函數(shù)圖象時(shí),我們通過描點(diǎn)或平移的方法畫出了所學(xué)的函數(shù)圖象.同時(shí)我們也學(xué)習(xí)了絕對(duì)值的意義,結(jié)合上面經(jīng)歷的學(xué)習(xí)過程,現(xiàn)在來解決下面的問題:在函數(shù)y=|kx﹣1|+b中,當(dāng)x=2時(shí),y=﹣3;x=0時(shí),y=﹣2.
(1)求這個(gè)函數(shù)的表達(dá)式;
(2)用列表描點(diǎn)的方法畫出該函數(shù)的圖象;請(qǐng)你先把下面的表格補(bǔ)充完整,然后在下圖所給的坐標(biāo)系中畫出該函數(shù)的圖象;
x | … | ﹣6 | ﹣4 | ﹣2 | 0 | 2 | 4 | 6 | … |
y | … |
| 0 | ﹣1 | ﹣2 | ﹣3 | ﹣2 |
| … |
(3)觀察這個(gè)函數(shù)圖象,并寫出該函數(shù)的一條性質(zhì);
(4)已知函數(shù)y= (x>0)的圖象如圖所示,與y=|kx﹣1|+b的圖象兩交點(diǎn)的坐標(biāo)分別是(2+4,-2),(2﹣2,﹣﹣1),結(jié)合你畫的函數(shù)圖象,直接寫出|kx﹣1|+b≤的解集.
【答案】(1)y=||-3;(2)1,-1;(3)當(dāng)x>2時(shí),y隨x增大而增大;或當(dāng)x<2時(shí),y隨x減小而減。唬4)2﹣2≤x≤+4
【解析】
(1)由題意利用待定系數(shù)法構(gòu)建方程組即可解決問題.
(2)由題意利用描點(diǎn)法即可解決問題.
(3)由題意觀察圖象,寫出函數(shù)的性質(zhì)即可.
(4)由題意求出點(diǎn)E,F的坐標(biāo)即可解決問題.
解:(1)把x=0,y=﹣2;x=2,y=﹣3代入y=|kx﹣1|+b中,得
﹣2=|﹣1|+b,﹣3=|2k﹣1|﹣3
∴b=﹣3,∴k=,
∴y=||-3.
(2)∵x=﹣6時(shí),y=1,
x=6時(shí),y=﹣1,
故答案為1,﹣1.
函數(shù)圖象如圖所示:
(3)當(dāng)x>2時(shí),y隨x增大而增大;或當(dāng)x<2時(shí),y隨x減小而減。
(4)由解得或,
∴E(﹣2+2,﹣1﹣),
同法可得F(2+4,﹣2+)
觀察圖象可知不等式|kx﹣1|+b≤的解集為:2﹣2≤x≤+4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在中,,點(diǎn)D、E分別是AB、AC的中點(diǎn),點(diǎn)F在BC延長(zhǎng)線上,連接EF,且.
如圖1,求證:四邊形CDEF是平行四邊形;
如圖2,連接AF、BE,在不添加任何輔助線的情況下,請(qǐng)直接寫出圖2中所有與面積相等的三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題:如圖①,在等邊三角形ABC內(nèi)有一點(diǎn)P,且PA=2,PB=,PC=1,求∠BPC的度數(shù)和等邊三角形ABC的邊長(zhǎng).
李明同學(xué)的思路是:將△BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,畫出旋轉(zhuǎn)后的圖形(如圖②),連接PP′,可得△P′PB是等邊三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可證),可得∠AP′B= °,所以∠BPC=∠AP′B= °,還可證得△ABP是直角三角形,進(jìn)而求出等邊三角形ABC的邊長(zhǎng)為 ,問題得到解決.
(1)根據(jù)李明同學(xué)的思路填空:∠AP′B= °,∠BPC=∠AP′B= °,等邊三角形ABC的邊長(zhǎng)為 .
(2)探究并解決下列問題:如圖③,在正方形ABCD內(nèi)有一點(diǎn)P,且PA=,PB=,PC=1.求∠BPC的度數(shù)和正方形ABCD的邊長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)y=a(x﹣h)2+k(a≠0)的圖象經(jīng)過原點(diǎn),最大值為16,且形狀與拋物線y=4x2+2x﹣3相同,則此函數(shù)的關(guān)系式為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,二次函數(shù)y=﹣x2+2x+3的圖象交x軸于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左側(cè)).若把點(diǎn)B向上平移m(m>0)個(gè)單位長(zhǎng)度得點(diǎn)B1,若點(diǎn)B1向左平移n(n>0)個(gè)單位長(zhǎng)度,將與該二次函數(shù)圖象上的點(diǎn)B2重合;若點(diǎn)B1向左平移(n+2)個(gè)單位長(zhǎng)度,將與該二次函數(shù)圖象上的點(diǎn)B3重合.則n的值為( 。
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的直徑AB長(zhǎng)為10,弦AC長(zhǎng)為6,∠ACB的平分線交⊙O于D.
(1)求BC的長(zhǎng);
(2)連接AD和BD,判斷△ABD的形狀,說明理由.
(3)求CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC于D,BE⊥AC于E,M為AB邊的中點(diǎn),連結(jié)ME、MD、ED,設(shè)AB=10,∠DBE=30°,則△EDM的面積為____________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0)、B兩點(diǎn),與y軸交于點(diǎn)C (0,3),點(diǎn)P在該拋物線的對(duì)稱軸上,且縱坐標(biāo)為2.
(1)求拋物線的表達(dá)式以及點(diǎn)P的坐標(biāo);
(2)當(dāng)三角形中一個(gè)內(nèi)角α是另一個(gè)內(nèi)角β的兩倍時(shí),我們稱α為此三角形的“特征角”.
①當(dāng)D在射線AP上,如果∠DAB為△ABD的特征角,求點(diǎn)D的坐標(biāo);
②點(diǎn)E為第一象限內(nèi)拋物線上一點(diǎn),點(diǎn)F在x軸上,CE⊥EF,如果∠CEF為△ECF的特征角,求點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與實(shí)踐
背景閱讀:旋轉(zhuǎn)就是將圖形上的每一點(diǎn)在平面內(nèi)繞著旋轉(zhuǎn)中心旋轉(zhuǎn)固定角度的位置移動(dòng),其中“旋”是過程,“轉(zhuǎn)”是結(jié)果.旋轉(zhuǎn)作為圖形變換的一種,具備圖形旋轉(zhuǎn)前后對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等:對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角:旋轉(zhuǎn)前、后的圖形是全等圖形等性質(zhì).所以充分運(yùn)用這些性質(zhì)是在解決有關(guān)旋轉(zhuǎn)問題的關(guān)。
實(shí)踐操作:如圖1,在Rt△ABC中,∠B=90°,BC=2AB=12,點(diǎn)D,E分別是邊BC,AC的中點(diǎn),連接DE,將△EDC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn),記旋轉(zhuǎn)角為α.
問題解決:(1)①當(dāng)α=0°時(shí),= ;②當(dāng)α=180°時(shí),= .
(2)試判斷:當(dāng)0°≤a<360°時(shí),的大小有無變化?請(qǐng)僅就圖2的情形給出證明.
問題再探:(3)當(dāng)△EDC旋轉(zhuǎn)至A,D,E三點(diǎn)共線時(shí),求得線段BD的長(zhǎng)為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com