【題目】如圖,將一幅三角板的直角頂點重合放置,其中∠A=30°,∠CDE=45°.若三角板ACB的位置保持不動,將三角板DCE繞其直角頂點C順時針旋轉(zhuǎn)一周.若△DCE其中一邊與AB平行,則∠ECB的度數(shù)為____.
【答案】15°、30°、60°、120°、150°、165°
【解析】分析:根據(jù)CD∥AB,CE∥AB和DE∥AB三種情況分別畫出圖形,然后根據(jù)每種情況分別進(jìn)行計算得出答案,每種情況都會出現(xiàn)銳角和鈍角兩種情況.
詳解:①、∵CD∥AB, ∴∠ACD=∠A=30°, ∵∠ACD+∠ACE=∠DCE=90°,
∠ECB+∠ACE=∠ACB=90°,∴∠ECB=∠ACD=30°;
CD∥AB時,∠BCD=∠B=60°,∠ECB=∠BCD+∠EDC=60°+90°=150°
②如圖1,CE∥AB,∠ACE=∠A=30°,∠ECB=∠ACB+∠ACE=90°+30°=120°;
CE∥AB時,∠ECB=∠B=60°.
③如圖2,DE∥AB時,延長CD交AB于F, 則∠BFC=∠D=45°,
在△BCF中,∠BCF=180°-∠B-∠BFC,=180°-60°-45°=75°,
∴ECB=∠BCF+∠ECF=75°+90°=165°或∠ECB=90°-75°=15°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,MN表示某引水工程的一段設(shè)計路線,從點M到點N的走向為北偏西30°,在點M的北偏西60°方向上有一點A,以點A為圓心,以500米為半徑的圓形區(qū)域為居民區(qū),取MN上另一點B,測得BA的方向為北偏西75°.已知MB=400米,若不改變方向,則輸水路線是否會穿過居民區(qū)?請通過計算說明理由.(參考數(shù)據(jù): ≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】城南中學(xué)九年級共有12個班,每班48名學(xué)生,學(xué)校對該年級學(xué)生數(shù)學(xué)學(xué)科學(xué)業(yè)水平測試成績進(jìn)行了抽樣分析,請按要求回答下列問題:
(1)(收集數(shù)據(jù))要從九年級學(xué)生中抽取一個48人的樣本,你認(rèn)為以下抽樣方法中最合理的是________.
①隨機(jī)抽取一個班級的48名學(xué)生;②在九年級學(xué)生中隨機(jī)抽取48名女學(xué)生;③在九年級12個班中每班各隨機(jī)抽取4名學(xué)生.
(2)(整理數(shù)據(jù))將抽取的48名學(xué)生的成績進(jìn)行分組,繪制成績頻數(shù)分布表和成績分布扇形統(tǒng)計圖如下.
請根據(jù)圖表中數(shù)據(jù)填空:
①表中m的值為________;
② B類部分的圓心角度數(shù)為________°;
③估計C、D類學(xué)生大約一共有________名.
九年級學(xué)生數(shù)學(xué)成績頻數(shù)分布表
成績(單位:分) | 頻數(shù) | 頻率 |
A類(80~100) | 24 |
|
B類(60~79) | 12 | |
C類(40~59) | 8 | m |
D類(0~39) | 4 |
(3)(分析數(shù)據(jù))教育主管部們?yōu)榱私鈱W(xué)校學(xué)生成績情況,將同層次的城南、城北兩所中學(xué)的抽樣數(shù)據(jù)進(jìn)行對比分析,得到下表:
學(xué)校 | 平均數(shù)(分) | 方差 | A、B類的頻率和 |
城南中學(xué) | 71 | 358 | 0.75 |
城北中學(xué) | 71 | 588 | 0.82 |
請你評價這兩所學(xué)校學(xué)生數(shù)學(xué)學(xué)業(yè)水平測試的成績,提出一個解釋來支持你的觀點.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】河西中學(xué)九年級共有9個班,300名學(xué)生,學(xué)校要對該年級學(xué)生數(shù)學(xué)學(xué)科學(xué)業(yè)水平測試成績進(jìn)行抽樣分析,請按要求回答下列問題:
(1)(收集數(shù)據(jù))若從所有成績中抽取一個容量為36的樣本,以下抽樣方法中最合理的是________.
①在九年級學(xué)生中隨機(jī)抽取36名學(xué)生的成績;
②按男、女各隨機(jī)抽取18名學(xué)生的成績;
③按班級在每個班各隨機(jī)抽取4名學(xué)生的成績.
(2)(整理數(shù)據(jù))將抽取的36名學(xué)生的成績進(jìn)行分組,繪制頻數(shù)分布表和成績分布扇形統(tǒng)計圖如下.請根據(jù)圖表中數(shù)據(jù)填空:
成績(單位:分) | 頻數(shù) | 頻率 |
A類(80~100) | 18 | |
B類(60~79) | 9 | |
C類(40~59) | 6 | |
D類(0~39) | 3 |
①C類和D類部分的圓心角度數(shù)分別為________°、________°;
②估計九年級A、B類學(xué)生一共有________名.
(3)(分析數(shù)據(jù))教育主管部門為了解學(xué)校教學(xué)情況,將河西、復(fù)興兩所中學(xué)的抽樣數(shù)據(jù)進(jìn)行對比,得下表:
學(xué)校 | 平均數(shù)(分) | 極差(分) | 方差 | A、B類的頻率和 |
河西中學(xué) | 71 | 52 | 432 | 0.75 |
復(fù)興中學(xué) | 71 | 80 | 497 | 0.82 |
你認(rèn)為哪所學(xué)校本次測試成績較好,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把代數(shù)式通過配湊等手段,得到完全平方式,再運用完全平方式是非負(fù)性這一性質(zhì)增加問題的條件,這種解題方法通常被稱為配方法.配方法在代數(shù)式求值、解方程、最值問題等都有著廣泛的應(yīng)用.
例如:若代數(shù)式M=a2﹣2ab+2b2﹣2b+2,利用配方法求M的最小值:a2﹣2ab+2b2﹣2b+2=a2﹣2ab+b2+b2﹣2b+1+1=(a﹣b)2+(b﹣1)2+1.
∵(a﹣b)2≥0,(b﹣1)2≥0,
∴當(dāng)a=b=1時,代數(shù)式M有最小值1.
請根據(jù)上述材料解決下列問題:
(1)在橫線上添上一個常數(shù)項使之成為完全平方式:a2+4a+ ;
(2)若代數(shù)式M=+2a+1,求M的最小值;
(3)已知a2+2b2+4c2﹣2ab﹣2b﹣4c+2=0,求代數(shù)式a+b+c的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】春天來了,石頭城邊,秦淮河畔,鳥語花香,柳條飄逸.為給市民提供更好的休閑鍛煉環(huán)境,決定對一段總長為1800米的外秦淮河沿河步行道出新改造,該任務(wù)由甲、乙兩工程隊先后接力完成.甲工程隊每天改造12米,乙工程隊每天改造8米,共用時200天.
(1)根據(jù)題意,小莉、小剛兩名同學(xué)分別列出尚不完整的方程組如下:
小莉: 小剛:
根據(jù)兩名同學(xué)所列的方程組,請你分別指出未知數(shù)x、y表示的意義,然后在方框中補(bǔ)全小莉、小剛兩名同學(xué)所列的方程組:
小莉:x表示 ,y表示 ;
小剛:x表示 ,y表示 .
(2)求甲、乙兩工程隊分別出新改造步行道多少米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法錯誤的是( ).
A.在一個角的內(nèi)部(包括頂點)到角的兩邊距離相等的點的軌跡是這個角的平分線
B.到點距離等于的點的軌跡是以點為圓心,半徑長為的圓
C.到直線距離等于的點的軌跡是兩條平行于且與的距離等于的直線
D.等腰三角形的底邊固定,頂點的軌跡是線段的垂直平分線
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,四邊形ABCO是長方形,B點的坐標(biāo)是(,3),C點的坐標(biāo)是(,0)。若E是線段BC上的一點,長方形ABCO沿AE折疊后,B點恰好落在x軸上的P點處,求出此時P點和E點的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形中,,,,,,試問在上是否存在點,使得以,,為頂點的三角形與是相似三角形?如果不存在,請說明理由;如果存在這樣的點有幾個?它距點多遠(yuǎn)?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com