【題目】已知正方形ABCD中,BC=3,點E、F分別是CB、CD延長線上的點,DF=BE,連接AE、AF,過點A作AHED于H點.

(1)求證:ADF≌△ABE;

(2)若BE=1,求tanAED的值.

【答案】(1)證明見解析;(2)

【解析】

試題分析:(1)根據(jù)輔助線的性質(zhì)得到AD=AB,ADC=ABC=90°,由鄰補角的定義得到ADF=ABE=90°,于是得到結論;

(2)過點A作AHDE于點H,根據(jù)勾股定理得到AE=,ED==5,根據(jù)三角形的面積S△AED=AD×BA=,S△ADE=ED×AH=,求得AH=1.8,由三角函數(shù)的定義即可得到結論.

試題解析:(1)正方形ABCD中,AD=AB,ADC=ABC=90°,∴∠ADF=ABE=90°,在ADF與ABE中,AD=AB,ADF=ABE,DF=BE,∴△ADF≌△ABE;

(2)過點A作AHDE于點H,在RtABE中,AB=BC=3,BE=1,AE=,ED==5,S△AED=AD×BA=,S△ADE=ED×AH=,解出AH=1.8,在RtAHE中,EH=2.6,tanAED===

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,P點是某海域內(nèi)的一座燈塔的位置,船A停泊在燈塔P的南偏東53°方向的50海里處,船B位于船A的正西方向且與燈塔P相距20海里.(本題參考數(shù)據(jù)sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)

(1)試問船B在燈塔P的什么方向?

(2)求兩船相距多少海里?(結果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知矩形ABCD和矩形EFGO在平面直角坐標系中,點B,F的坐標分別為(4,4)(2,1).若矩形ABCD和矩形EFGO是位似圖形,點P(PGC)是位似中心,則點P的坐標為(  )

A. (0,3)

B. (0,2.5)

C. (0,2)

D. (0,1.5)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O點是ABCD1E1F1的位似中心,ABC的周長為1.D1E1、F1分別是線段OA、OB、OC的中點,則D1E1F1的周長為;若OD2OAOE2OB、OF2OC,則D2E2F2的周長為;ODnOA、OEnOBOFnOC,則DnEnFn的周長為__________(用正整數(shù)n表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在的正方形方格中,每個小正方形的邊長都為1,頂點都在網(wǎng)格線交點處的三角形, 是一個格點三角形.

在圖中,請判斷是否相似,并說明理由;

在圖中,以O為位似中心,再畫一個格點三角形,使它與的位似比為21

在圖中,請畫出所有滿足條件的格點三角形,它與相似,且有一條公共邊和一個公共角.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB兩地之間有一座山,汽車原來從A地到B地需經(jīng)C地沿折線ACB行駛,現(xiàn)開通隧道后,汽車直接沿直線AB行駛即可到達B.已知AC=120km,∠A=30°,∠B=135°,求隧道開通后汽車從A地到B地需行駛多少千米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖ABCD的對角線相交于點O,點E在邊BC的延長線上,且OE=OB,連接DE

1求證:DEBE;

2如果OECD求證:BD·CE=CD·DE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AMABC的中線,點D是線段AM上一點(不與點A重合).過點DKDAB,交BC于點K,過點CCEAM,交KD的延長線于點E,連接AE、BD

1)求證:ABM∽△EKC;

2)求證:ABCKEKCM

3)判斷線段BD、AE的關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點E是矩形ABCD的一邊AD的中點,F,連接AF;若,則______

查看答案和解析>>

同步練習冊答案