【題目】如圖1,已知正方形ABCD的邊CD在正方形DEFG的邊DE上,連接AE、GC.
(1)試猜想AE與GC有怎樣的關(guān)系,并證明你的結(jié)論.
(2)將正方形DEFG繞點(diǎn)D按順時(shí)針方向旋轉(zhuǎn),使點(diǎn)E落在BC邊上,如圖2,連接AE和CG.你認(rèn)為(1)中的結(jié)論是否還成立?若成立,給出證明;若不成立,請說明理由.
【答案】(1) AE⊥GC ,AE=GC ;(2)成立,證明詳見解析
【解析】
(1)觀察圖形,AE、CG的位置關(guān)系可能是垂直,下面著手證明.由于四邊形ABCD、DEFG都是正方形,易證得△ADE≌△CDG,則∠1=∠2,由于∠2、∠3互余,所以∠1、∠3互余,由此可得AE⊥GC.
(2)題(1)的結(jié)論仍然成立,參照(1)題的解題方法,可證△ADE≌△CDG,得∠5=∠4,由于∠4、∠7互余,而∠5、∠6互余,那么∠6=∠7;由圖知∠AEB=∠CEH=90°-∠6,即∠7+∠CEH=90°,由此得證.
解:(1)AE⊥GC,理由如下:
如圖1,延長GC交AE于點(diǎn)H,
在正方形ABCD與正方形DEFG中,AD=DC,∠ADE=∠CDG=90°,DE=DG,
在△ADE和△CDG中,
,
∴△ADE≌△CDG(SAS),
∴∠1=∠2;
∵∠2+∠3=90°,
∴∠1+∠3=90°,
∴∠AHG=180°-(∠1+∠3)=180°-90°=90°,
∴AE⊥GC.
(2)成立,理由如下:
如圖2,延長AE和GC相交于點(diǎn)H,
在正方形ABCD和正方形DEFG中,
AD=DC,DE=DG,∠ADC=∠DCB=∠B=∠BAD=∠EDG=90°,
∴∠1=∠2=90°-∠3;
在△ADE和△CDG中,
,
∴△ADE≌△CDG(SAS),
∴∠5=∠4;
又∵∠5+∠6=90°,∠4+∠7=180°-∠DCE=180°-90°=90°,
∴∠6=∠7,
又∵∠6+∠AEB=90°,∠AEB=∠CEH,
∴∠CEH+∠7=90°,
∴∠EHC=90°,
∴AE⊥GC.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一只貓頭鷹蹲在一棵樹AC的B(點(diǎn)B在AC上)處,發(fā)現(xiàn)一只老鼠躲進(jìn)短墻DF的另一側(cè),貓頭鷹的視線被短墻遮住,為了尋找這只老鼠,它又飛至樹頂C處,已知短墻高DF=4米,短墻底部D與樹的底部A的距離為2.7米,貓頭鷹從C點(diǎn)觀測F點(diǎn)的俯角為53°,老鼠躲藏處M(點(diǎn)M在DE上)距D點(diǎn)3米.(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
(1)貓頭鷹飛至C處后,能否看到這只老鼠?為什么?
(2)要捕捉到這只老鼠,貓頭鷹至少要飛多少米(精確到0.1米)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,動(dòng)點(diǎn)P在平面直角坐標(biāo)系中按圖中箭頭所示方向運(yùn)動(dòng),第1次從原點(diǎn)運(yùn)動(dòng)到點(diǎn)(1,1),第2次接著運(yùn)動(dòng)到點(diǎn)(2,0),第3次接著運(yùn)動(dòng)到點(diǎn)(3,2),…,按這樣的運(yùn)動(dòng)規(guī)律,經(jīng)過第2017次運(yùn)動(dòng)后,動(dòng)點(diǎn)P的坐標(biāo)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)先化簡,再求值: ,其中
(2)已知, 求的值.
(3)解方程
(4)當(dāng)m為何值時(shí),關(guān)于x的方程的解是正數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一家小型放映廳盈利額y(元)與售票數(shù)x(張)之間的關(guān)系如圖,保險(xiǎn)部門規(guī)定:觀眾超過150人,要繳納保險(xiǎn)費(fèi)50元,試根據(jù)圖像回答問題:
(1)該放映廳有 個(gè)座位,該放映廳演出一場電影所需各項(xiàng)成本總和是 元;每張票的售價(jià)是 元;
(2)當(dāng)售票數(shù)x為 時(shí),不賠不賺:售票數(shù)x為 時(shí),賠本;要獲得最大利潤150元,售票數(shù)x應(yīng)為 張.
(3)當(dāng)售票數(shù)x是多少張時(shí),所得的利潤和賣出150張時(shí)的利潤相等(列方程解答)?當(dāng)售票數(shù)滿足什么條件時(shí),此時(shí)利潤比x=150張時(shí)多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】八(1)班組織了一次經(jīng)典誦讀比賽,甲、乙兩隊(duì)各10人的比賽成績?nèi)缦卤恚?/span>
甲 | 7 | 8 | 9 | 7 | 10 | 10 | 9 | 10 | 10 | 10 |
乙 | 10 | 8 | 7 | 9 | 8 | 10 | 10 | 9 | 10 | 9 |
(1)甲隊(duì)成績的中位數(shù)是 分,乙隊(duì)成績的眾數(shù)是 分;
(2)計(jì)算乙隊(duì)的方差;
(3)已知甲隊(duì)成績的方差是1.4,則成績較為整齊的是 隊(duì).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(用方程解決問題)新冠疫情期間,N95口罩每只的進(jìn)價(jià)比一次性醫(yī)用口罩每只進(jìn)價(jià)多10元,某藥店分別花20000元和60000元購進(jìn)一次性醫(yī)用口罩和N95口罩,購進(jìn)的一次性醫(yī)用口罩的數(shù)量是N95口罩?jǐn)?shù)量的2倍.
(1)求N95口罩進(jìn)價(jià)每只多少元?
(2)國家規(guī)定:N95口罩銷售價(jià)不得高于30元/只.根據(jù)市場調(diào)研:N95口罩每天的銷量y(只)與銷售單價(jià)x(元/只)之間的函數(shù)關(guān)系式為y=-10x+500,該藥店決定對一次性醫(yī)用口罩按進(jìn)價(jià)銷售,但又想銷售口罩每天獲利2400元,該藥店需將N95口罩的銷售價(jià)格定為每只多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示.
(1)將△ABC向下平移3個(gè)單位長度,再向右平移2個(gè)單位長度,畫出平移后的△A1B1C1;并寫出頂點(diǎn)A1、B1、C1各點(diǎn)的坐標(biāo);
(2)計(jì)算△A1B1C1的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是圓O的切線,切點(diǎn)為A,AB是圓O的弦。過點(diǎn)B作BC//AD,交圓O于點(diǎn)C,連接AC,過點(diǎn)C作CD//AB,交AD于點(diǎn)D。連接AO并延長交BC于點(diǎn)M,交過點(diǎn)C的直線于點(diǎn)P,且BCP=ACD。
(1) 判斷直線PC與圓O的位置關(guān)系,并說明理由:
(2) 若AB=9,BC=6,求PC的長。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com