【題目】如圖,AD是圓O的切線,切點為A,AB是圓O的弦。過點B作BC//AD,交圓O于點C,連接AC,過點C作CD//AB,交AD于點D。連接AO并延長交BC于點M,交過點C的直線于點P,且BCP=ACD。

(1) 判斷直線PC與圓O的位置關(guān)系,并說明理由:

(2) 若AB=9,BC=6,求PC的長。

【答案】(1)相切;證明見解析;(2.

【解析】試題分析:(1)通過分析,直線與圓O已經(jīng)有一個公共點,連接半徑0C,只要證明OC⊥PC即可;(2)根據(jù)AD是切線和AD∥BC證明AP⊥BC,利用垂徑定理計算出CMBM3,在Rt△AMB中,利用勾股定義計算出AM的長,在Rt△OMC中,利用勾股定理建立方程計算出圓O的半徑的長,最后證明△OMC△OCP,利用相似三角形的對應(yīng)邊成比例計算出PC的長.

試題解析:(1) 直線PC與圓O相切.

連接CO并延長,交圓O于點N,連接BN.

∵AB//CD

∴BAC=ACD.

∵BAC=BNC,

∴BNC=ACD.

∵BCP=ACD,

∴BNC=BCP.

∵CN是圓O的直徑,

∴CBN=90°.

∴BNC+BCN=90°,

∴BCP+BCN=90°.

∴PCO=90°,即PC^OC.

C在圓O上,

直線PC與圓O相切.

(2) ∵AD是圓O的切線,

∴AD^OA,即OAD=90°.

∵BC//AD,

∴OMC=180°-OAD=90°,即OM^BC.

∴MC=MB.

∴AB=AC.

RtAMC中,AMC=90°AC=AB=9,MC=BC=3,

由勾股定理,得AM===6.

設(shè)圓O的半徑為r.

RtOMC中,OMC=90°,OM=AM-AO=6-rMC=3,OC=r,

由勾股定理,得OM 2+MC 2=OC 2,

(6-r)2+32=r2.

解得r=.

△OMC△OCP中,

∵OMC=OCPMOC=COP,

∴△OMC△OCP.

=,即 =.

PC=.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題是真命題的是(

A. 9的平方根是﹣3B. 7是﹣49的平方根

C. 5-125的立方根D. 8的立方根是±2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市甲、乙兩個汽車銷售公司,去年一至十月份每月銷售同種品牌汽車的情況如圖所示:
(1)請你根據(jù)上圖填寫下表:

銷售公司

平均數(shù)

方差

中位數(shù)

眾數(shù)

5.2

9

9

17.0

8


(2)請你從以下兩個不同的方面對甲、乙兩個汽車銷售公司去年一至十月份的銷售情況進行分析: ①從平均數(shù)和方差結(jié)合看;
②從折線圖上甲、乙兩個汽車銷售公司銷售數(shù)量的趨勢看(分析哪個汽車銷售公司較有潛力).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】菱形具有而矩形不一定具有的性質(zhì)是(
A.對角線互相垂直
B.對角線相等
C.對角線互相平分
D.對角互補

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系XOY中,有A(3,2),B (﹣1,﹣4 ),P是X軸上的一點,Q是Y軸上的一點,若以點A,B,P,Q四個點為頂點的四邊形是平行四邊形,則Q點的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在南北方向的海岸線MN上,有A、B兩艘巡邏船,現(xiàn)均收到故障船C的求救信號.已知A、B兩船相距100(+1)海里,船C在船A的北偏東60°方向上,船C在船B的東南方向上,MN上有一觀測點D,測得船C正好在觀測點D的南偏東75°方向上.

(1)分別求出A與C,A與D間的距離AC和AD(如果運算結(jié)果有根號,請保留根號).

(2)已知距離觀測點D處100海里范圍內(nèi)有暗礁,若巡邏船A沿直線AC去營救船C,在去營救的途中有無觸礁的危險?(參考數(shù)據(jù):≈1.41,≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】水果店王阿姨到水果批發(fā)市場打算購進一種水果銷售,經(jīng)過還價,實際價格每千克比原來少2元,發(fā)現(xiàn)原來買這種80千克的錢,現(xiàn)在可買88千克。

(1)現(xiàn)在實際這種每千克多少元?

(2)準(zhǔn)備這種,若這種的量y(千克)與單價x(元/千克)滿足如圖所示的一次函數(shù)關(guān)系。

求y與x之間的函數(shù)關(guān)系式;

請你幫拿個主意,將這種的單價定為多少時,能獲得最大利潤?最大利潤是多少?(利潤=收入-進貨金額)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,將拋物線y2x12+1先向左平移2個單位,再向上平移3個單位,則平移后拋物線的表達式是(  )

A.y2x+12+4B.y2x12+4

C.y2x+22+4D.y2x32+4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列詩句表述的是隨機事件的是(    )

A.離離原上草,一歲一枯榮B.危樓高百尺,手可摘星辰

C.會當(dāng)凌絕頂,一覽眾山小D.東邊日出西邊雨,道是無晴卻有晴

查看答案和解析>>

同步練習(xí)冊答案