【題目】一家小型放映廳盈利額y(元)與售票數(shù)x(張)之間的關(guān)系如圖,保險(xiǎn)部門規(guī)定:觀眾超過150人,要繳納保險(xiǎn)費(fèi)50元,試根據(jù)圖像回答問題:
(1)該放映廳有 個(gè)座位,該放映廳演出一場電影所需各項(xiàng)成本總和是 元;每張票的售價(jià)是 元;
(2)當(dāng)售票數(shù)x為 時(shí),不賠不賺:售票數(shù)x為 時(shí),賠本;要獲得最大利潤150元,售票數(shù)x應(yīng)為 張.
(3)當(dāng)售票數(shù)x是多少張時(shí),所得的利潤和賣出150張時(shí)的利潤相等(列方程解答)?當(dāng)售票數(shù)滿足什么條件時(shí),此時(shí)利潤比x=150張時(shí)多?
【答案】(1)200個(gè);200元;2元/張.(2)100張;0≤x<100;x=184.(3)x=125;當(dāng)售出的票數(shù)大于167小于等于200時(shí),所獲得的利潤比x=150時(shí)多..
【解析】
(1)觀察圖象可知該放映廳有多少個(gè)座位和放映廳演出一場電影所需各項(xiàng)成本總和,同時(shí)根據(jù)圖象可知買100張利潤為0,再根據(jù)成本可知道每張票價(jià).(2)當(dāng)時(shí)0≤x≤150時(shí),一次函數(shù)圖象與x軸相交,根據(jù)交點(diǎn)坐標(biāo),可求不賠不賺,賠本,二種情況的x取值范圍;當(dāng)150<x≤200時(shí),根據(jù)一次函數(shù)圖象可知獲得最大利潤150元售多少張票.(3)利用賣出150張時(shí),利潤為50元,然后把y=50代入y=2x-200求出x即可;x=150時(shí),y=100,把y=100代入150<x≤200的函數(shù)式,求x的值,再求利潤比多時(shí),x的取值范圍.
(1)觀察圖象可知該放映廳有200個(gè)座位和放映廳演出一場電影所需各項(xiàng)成本總和200元,又因?yàn)橘I100張利潤為0,所以每張票的售價(jià)=200÷100=2元/張.
(2)當(dāng)時(shí)0≤x≤150時(shí),設(shè)線段解析式為y=ax+b,把(0,-200),(150,100)代入得b=-200,150a+b=100.解得a=2,b=-200,所以函數(shù)表達(dá)式為y=2x-200,令x=0得x=100,所以當(dāng)售出100張票時(shí),此時(shí)不賺不賠;當(dāng)0≤x<100時(shí),此時(shí)賠本;當(dāng)150<x≤200時(shí),設(shè)線段解析式為y=mx+n,把(150,50)(200,200)代入得150m+n=50,200m+n=200解得m=3,n=-400,所以函數(shù)表達(dá)式為y=3x-400,當(dāng)y=150時(shí),代入得x=,因?yàn)?/span>x為整數(shù),故為184張.
(3)根據(jù)題意得:當(dāng)賣出150張時(shí),利潤為50元,所以當(dāng)y=50時(shí)代入y=2x-200得x=125,所以當(dāng)x=125時(shí),所得的利潤和賣出150張時(shí)的利潤相等;把y=100代入y=3x-400中得100=3x-400,解得x=,因?yàn)?/span>x為整數(shù),所以當(dāng)售出的票數(shù)大于167小于等于200時(shí),所獲得的利潤比x=150時(shí)多.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=15,BC=14,AC=13,求△ABC的面積.
某學(xué)習(xí)小組經(jīng)過合作交流,給出了下面的解題思路:
作AD⊥BC于D,設(shè)BD=x,用含x的代數(shù)式表示CD→根據(jù)勾股定理,利用AD作為“橋梁”,列出方程求出x→再求出AD的長,從而計(jì)算三角形的面積.請你按照他們的解題思路完成解答過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)計(jì)劃購進(jìn)甲、乙兩種規(guī)格的書柜.調(diào)查發(fā)現(xiàn),若購買甲種書柜3個(gè),乙種書柜2個(gè),共需資金1020元;若購買甲種書柜4個(gè),乙種書柜3個(gè),共需資金1440元.
(1)甲、乙兩種書柜每個(gè)的價(jià)格分別是多少元?
(2)若該校計(jì)劃購進(jìn)這兩種規(guī)格的書柜共20個(gè),其中乙種書柜的數(shù)量不少于甲種書柜的數(shù)量,學(xué)校至多能夠提供資金4320元,請?jiān)O(shè)計(jì)幾種購買方案供這個(gè)學(xué)校選擇,并求出最省錢的方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠BAC=90°AB=AC,分別過點(diǎn)B、C做經(jīng)過點(diǎn)A的直線的垂線BD、CE,若BD=14cm,CE=3cm,則DE=_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(8分)為了貫徹落實(shí)市委市府提出的“精準(zhǔn)扶貧”精神.某校特制定了一系列關(guān)于幫扶A、B兩貧困村的計(jì)劃.現(xiàn)決定從某地運(yùn)送152箱魚苗到A、B兩村養(yǎng)殖,若用大小貨車共15輛,則恰好能一次性運(yùn)完這批魚苗,已知這兩種大小貨車的載貨能力分別為12箱/輛和8箱/輛,其運(yùn)往A、B兩村的運(yùn)費(fèi)如下表:
(1)求這15輛車中大小貨車各多少輛?
(2)現(xiàn)安排其中10輛貨車前往A村,其余貨車前往B村,設(shè)前往A村的大貨車為x輛,前往A、B兩村總費(fèi)用為y元,試求出y與x的函數(shù)解析式.
(3)在(2)的條件下,若運(yùn)往A村的魚苗不少于100箱,請你寫出使總費(fèi)用最少的貨車調(diào)配方案,并求出最少費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知正方形ABCD的邊CD在正方形DEFG的邊DE上,連接AE、GC.
(1)試猜想AE與GC有怎樣的關(guān)系,并證明你的結(jié)論.
(2)將正方形DEFG繞點(diǎn)D按順時(shí)針方向旋轉(zhuǎn),使點(diǎn)E落在BC邊上,如圖2,連接AE和CG.你認(rèn)為(1)中的結(jié)論是否還成立?若成立,給出證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一元二次方程x2﹣4x+k=0有兩個(gè)不相等的實(shí)數(shù)根
(1)求k的取值范圍;
(2)如果k是符合條件的最大整數(shù),且一元二次方程x2﹣4x+k=0與x2+mx﹣1=0有一個(gè)相同的根,求此時(shí)m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y=ax+b(a≠0)、二次函數(shù)y=ax2+bx和反比例函數(shù)y=(k≠0)在同一直角坐標(biāo)系中的圖象如圖所示,A點(diǎn)的坐標(biāo)為(-2,0),則下列結(jié)論中,正確的是( 。
A.b=2a+k B.a(chǎn)=b+k C.a(chǎn)>b>0 D.a(chǎn)>k>0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】蕪湖長江大橋是中國跨度最大的公路和鐵路兩用橋梁,大橋采用低塔斜拉橋橋型(如甲圖),圖乙是從圖甲引申出的平面圖,假設(shè)你站在橋上測得拉索AB與水平橋面的夾角是30°,拉索CD與水平橋面的夾角是60°,兩拉索頂端的距離BC為2米,兩拉索底端距離AD為20米,請求出立柱BH的長.(結(jié)果精確到0.1米, ≈1.732)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com