【題目】如圖,菱形ABCD對角線交于點O,BE∥AC,AE∥BD,EO與AB交于點F.
(1)求證:四邊形AEBO是矩形.
(2)若CD=5,求OE的長.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(3分)在同一平面直角坐標(biāo)系中,函數(shù)y=ax2+bx與y=bx+a的圖象可能是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在每個小正方形的邊長為1的網(wǎng)格中,△ABC的頂點A在格點上,B是小正方形邊的中點,經(jīng)過點A,B的圓的圓心在邊AC上.
(Ⅰ)弦AB的長等于_____;
(Ⅱ)請用無刻度的直尺,在如圖所示的網(wǎng)格中,找出經(jīng)過出點A,B的圓的圓心O,并簡要說明點O的位置是如何找到的(不要求證明)_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,AB=6,E為AB的中點,將△ADE沿DE翻折得到△FDE,延長EF交BC于G,FH⊥BC,垂足為H,連接BF、DG.以下結(jié)論:①BF∥ED;②△DFG≌△DCG;③△FHB∽△EAD;④tan∠GEB=;⑤S△BFG=2.6;其中正確的個數(shù)是( )
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)探究新知:如圖1,已知與的面積相等,試判斷與的位置關(guān)系,并說明理由.
(2)結(jié)論應(yīng)用:
①如圖2,點,在反比例函數(shù)的圖像上,過點作軸,過點作軸,垂足分別為,,連接.試證明:.
②若①中的其他條件不變,只改變點,的位置如圖3所示,請畫出圖形,判斷與的位置關(guān)系并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x+3分別交 x軸、y軸于點A、C.點P是該直線與雙曲線在第一象限內(nèi)的一個交點,PB⊥x軸于B,且S△ABP=16.
(1)求證:△AOC∽△ABP;
(2)求點P的坐標(biāo);
(3)設(shè)點Q與點P在同一個反比例函數(shù)的圖象上,且點Q在直線PB的右側(cè),作QD⊥x軸于D,當(dāng)△BQD與△AOC相似時,求點Q的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某課外學(xué)習(xí)小組根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)的圖象與性質(zhì)進(jìn)行了探究請補(bǔ)充完整以下探索過程:
(1)列表:
x | … | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | … |
y | … | m | 0 | -3 | -4 | -3 | 0 | -3 | -4 | n | 0 | … |
直接寫出________,________;
(2)根據(jù)上表中的數(shù)據(jù),在平面直角坐標(biāo)系內(nèi)補(bǔ)全該函數(shù)的圖象,并結(jié)合圖象寫出該函數(shù)的兩條性質(zhì):
性質(zhì)1______________________________________________________
性質(zhì)2_______________________________________________________
(3)若方程有四個不同的實數(shù)根,請根據(jù)函數(shù)圖象,直接寫出k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB是⊙O的直徑,弦CD⊥AB于點E.
(1)如圖①,若CD=8,BE=2,求⊙O的半徑;
(2)如圖②,點G是上一點,AG的延長線與DC的延長線交于點F,求證:∠AGD=∠FGC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點D在邊AB上,點E在邊AC上,CE=BD,連接CD,BE,BE與CD相交于點F.
(1)如圖1,若△ACD為等邊三角形,且CE=DF,求∠CEF的度數(shù);
(2)如圖2,若AC=AD,求證:EF=FB;
(3)如圖3,在(2)的條件下,若∠CFE=45°,△BCD的面積為4,求線段CD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com