【題目】如圖,一條拋物線與x軸相交于A,B兩點,其頂點P在折線C-D-E上移動,若點C,D,E的坐標分別為(-1,4),(3,4),(3,1),點B的橫坐標的最小值為1,則點A的橫坐標的最大值為________.
【答案】2
【解析】
拋物線在平移過程中形狀沒有發(fā)生變化,因此函數(shù)解析式的二次項系數(shù)在平移前后不會改變.首先,當點B橫坐標取最小值時,函數(shù)的頂點在C點,根據(jù)待定系數(shù)法可確定拋物線的解析式;而點A橫坐標取最大值時,拋物線的頂點應移動到E點,結合前面求出的二次項系數(shù)以及E點坐標可確定此時拋物線的解析式,進一步能求出此時點A的坐標,即點A的橫坐標最大值.
解:由圖知:當點B的橫坐標為1時,拋物線頂點取C(-1,4),設該拋物線的解析式為:y=a(x+1)2+4,代入點B坐標,得:
a(x+1)2+4=0,
解得:a=-1,
即:B點橫坐標取最小值時,拋物線的解析式為:y=-(x+1)2+4.
當A點橫坐標取最大值時,拋物線頂點應取E(3,1),則此時拋物線的解析式:y=-(x-3)2+1=-x2+6x-8=-(x-2)(x-4),
即與x軸的交點為(2,0)或(4,0)(舍去),
故點A的橫坐標的最大值為2.
故答案為:2.
科目:初中數(shù)學 來源: 題型:
【題目】如圖是8×8的標準點陣圖,直線l、m互相垂直,已知△ABC.
(1)寫出△ABC的形狀;
(2)分別畫出△ABC關于直線l、m對稱的△A1B1C1,△A2B2C2,再畫出△A1B1C1關于直線m對稱的△A3B3C3
(3)△A2B2C2與△A3B3C3關于哪條直線對稱? (填“直線l、m”)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】列方程解應用題:根據(jù)《中國鐵路中長期發(fā)展規(guī)劃》,預計到2020年底,我國建設城際軌道交通的公里數(shù)是客運專線的2倍。其中建設城際軌道交通約投入8000億元,客運專線約投入3500億元。據(jù)了解,建設每公里城際軌道交通與客運專線共需1.5億元。預計到2020年底,我國將建設城際軌道交通和客運專線分別約多少公里?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P在射線AB的上方,且∠PAB=45°,PA=2,點M是射線AB上的動點(點M不與點A重合),現(xiàn)將點P繞點A按順時針方向旋轉60°到點Q,將點M繞點P按逆時針方向旋轉60°到點N,連接AQ,PM,PN,作直線QN.
(1)求證:AM=QN.
(2)直線QN與以點P為圓心,以PN的長為半徑的圓是否存在相切的情況?若存在,請求出此時AM的長,若不存在,請說明理由.
(3)當以點P為圓心,以PN的長為半徑的圓經過點Q時,直接寫出劣弧NQ與兩條半徑所圍成的扇形的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了參加“仙桃市中小學生首屆詩詞大會”,某校八年級的兩班學生進行了預選,其中班上前5名學生的成績(百分制)分別為:八(l)班 86,85,77,92,85;八(2)班 79,85,92,85,89.通過數(shù)據(jù)分析,列表如下:
(1)直接寫出表中a,b,c,d的值;
(2)根據(jù)以上數(shù)據(jù)分析,你認為哪個班前5名同學的成績較好?說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點A(6,0),B(8,5),將線段OA平移至CB,點D(x,0)在x軸正半軸上(不與點A重合),連接OC,AB,CD,BD.
(1)求對角線AC的長;
(2)△ODC與△ABD的面積分別記為S1,S2,設S=S1﹣S2,求S關于x的函數(shù)解析式,并探究是否存在點D使S與△DBC的面積相等,如果存在,請求出x的值(或取值范圍);如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】利用圖象解一元二次方程x2-2x-1=0時,我們采用的一種方法是在直角坐標系中畫出拋物線y=x2和直線y=2x+1,兩圖象交點的橫坐標就是該方程的解.
(1)請再給出一種利用圖象求方程x2-2x-1=0的解的方法;
(2)已知函數(shù)y=x3的圖象(如圖),求方程x3-x-2=0的解(結果保留兩位有效數(shù)字).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】點(為正整數(shù))都在數(shù)軸上,點在原點的左邊,且;點在點的右邊,且;點在點的左邊,且;點在點的右邊,且;…,依照上述規(guī)律,點所表示的數(shù)分別為 ( )
A.2018,-2019B.1009,-1010C.-2018,2019D.-1009,1009
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的方程
(1)若方程有兩個相等的實數(shù)根,求m的值,并求出此時方程的根;
(2)是否存在正數(shù)m,使方程的兩個實數(shù)根的平方和等于224.若存在,求出滿足條件的m的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com