【題目】如圖,將一張正方形紙片,剪成四個大小形狀一樣的小正方形,然后將其中的一個小正方形再按同樣的方法剪成四個小正方形,再將其中的一個小正方形剪成四個小正方形,如此循環(huán)進行下去.

1)填出下表:

剪的次數(shù)

1

2

3

4

5

6

正方形個數(shù)

2)如果剪了100次,共剪出   個小正方形?

3)如果剪次,共剪出   個小正方形?

【答案】14、710、13、16、19;(2301;(3

【解析】

根據(jù)題意可以發(fā)現(xiàn):每一次剪的時候,都是把上一次的圖形中的一個進行剪.所以在4的基礎上,依次多3個,繼而解答各題即可.

1)填表如下:

剪的次數(shù)

1

2

3

4

5

正方形個數(shù)

4

7

10

13

16

2)結合圖形,不難發(fā)現(xiàn):在4的基礎上,依次多3個.

如果剪了100次,共剪出3×100+1=301個小正方形;

3)如果剪了n次,共剪出(3n+1)個小正方形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在三角形AOB和三角形COD中,∠AOB=∠COD,

1)已知∠AOB90°,把兩個三角形拼成如圖所示的圖案,當∠BOD30°時,求∠AOC的度數(shù).

2)已知∠AOB90°,把兩個三角形拼成如圖所示的圖案,當∠AOC2BOD時,求∠BOD的度數(shù).

3)當∠AOBα時,把兩個三角形拼成如圖所示的圖案.用含有α的代數(shù)式表示∠AOC+BOD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,⊙A與y軸相切于原點O,平行于x軸的直線交⊙A于M、M兩點,若點M的坐標是(-4,-2),則點N的坐標為( )

A.(-1,-2)
B.(1,2)
C.(-1.5,-2)
D.(1.5,-2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD和四邊形ECGF都是正方形,C、D、E在一條直線上,B、CG在一條直線上.

(1)寫出表示陰影部分面積的表達式(結果要求化簡);

(2)求陰影面積的面積

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖17,在△ABC中,DBC邊上的一點,EAD的中點,過ABC的平行線交CE的延長線于F,且AFBD,連接BF.

(1)求證:BDCD.

(2)如果ABAC,試判斷四邊形AFBD的形狀,并證明你的結論.

(3)當△ABC滿足什么條件時,四邊形AFBD為正方形?(寫出條件即可,不要求證明)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點O為直線AB上一點,過點O作射線OC,使∠BOC=135°,將一個含45°角的直角三角尺的一個頂點放在點O處,斜邊OM與直線AB重合,另外兩條直角邊都在直線AB的下方.

1)將圖1中的三角尺繞著點O逆時針旋轉90°,如圖2所示,此時∠BOM=_____;在圖2中,OM是否平分∠CON?請說明理由;

2)緊接著將圖2中的三角板繞點O逆時針繼續(xù)旋轉到圖3的位置所示,使得ON在∠AOC的內部,請?zhí)骄浚骸?/span>AOM與∠CON之間的數(shù)量關系,并說明理由;

3)將圖1中的三角板繞點O按每秒的速度沿逆時針方向旋轉一周,在旋轉的過程中,第t秒時,直線ON恰好平分銳角∠AOC,則t的值為_____(直接寫出結果).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一科技小組進行了機器人行走性能試驗,在試驗場地有A、BC三點順次在同一筆直的賽道上,AB兩點之間的距離是90米,甲、乙兩機器人分別從AB兩點同時同向出發(fā)到終點C,乙機器人始終以50米分的速度行走,乙行走9分鐘到達C點.設兩機器人出發(fā)時間為t(分鐘),當t3分鐘時,甲追上乙.

請解答下面問題:

1B、C兩點之間的距離是   米.

2)求甲機器人前3分鐘的速度為多少米/分?

3)若前4分鐘甲機器人的速度保持不變,在4≤t≤6分鐘時,甲的速度變?yōu)榕c乙相同,求兩機器人前6分鐘內出發(fā)多長時間相距28米?

4)若6分鐘后甲機器人的速度又恢復為原來出發(fā)時的速度,直接寫出當t6時,甲、乙兩機器人之間的距離S.(用含t的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知等腰三角形ABC中,AB=AC,點D、E分別在邊AB、AC上,且AD=AE,連接BE、CD,交于點F

(1)判斷∠ABE與∠ACD的數(shù)量關系,并說明理由;

(2)求證:過點A、F的直線垂直平分線段BC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知y=y +y ,y 與x 成正比例,y 與x-1成反比例,并且x=0時y=1,x=-1時y=2;求當x=2時y的值.

查看答案和解析>>

同步練習冊答案