【題目】如圖,將一張正方形紙片,剪成四個大小形狀一樣的小正方形,然后將其中的一個小正方形再按同樣的方法剪成四個小正方形,再將其中的一個小正方形剪成四個小正方形,如此循環(huán)進行下去.
(1)填出下表:
剪的次數(shù) | 1 | 2 | 3 | 4 | 5 | 6 |
正方形個數(shù) |
(2)如果剪了100次,共剪出 個小正方形?
(3)如果剪次,共剪出 個小正方形?
科目:初中數(shù)學 來源: 題型:
【題目】在三角形AOB和三角形COD中,∠AOB=∠COD,
(1)已知∠AOB=90°,把兩個三角形拼成如圖①所示的圖案,當∠BOD=30°時,求∠AOC的度數(shù).
(2)已知∠AOB=90°,把兩個三角形拼成如圖②所示的圖案,當∠AOC=2∠BOD時,求∠BOD的度數(shù).
(3)當∠AOB=α時,把兩個三角形拼成如圖③所示的圖案.用含有α的代數(shù)式表示∠AOC+∠BOD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,⊙A與y軸相切于原點O,平行于x軸的直線交⊙A于M、M兩點,若點M的坐標是(-4,-2),則點N的坐標為( )
A.(-1,-2)
B.(1,2)
C.(-1.5,-2)
D.(1.5,-2)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD和四邊形ECGF都是正方形,點C、D、E在一條直線上,點B、C、G在一條直線上.
(1)寫出表示陰影部分面積的表達式(結果要求化簡);
(2)當求陰影面積的面積
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖17,在△ABC中,D是BC邊上的一點,E是AD的中點,過A作BC的平行線交CE的延長線于F,且AF=BD,連接BF.
(1)求證:BD=CD.
(2)如果AB=AC,試判斷四邊形AFBD的形狀,并證明你的結論.
(3)當△ABC滿足什么條件時,四邊形AFBD為正方形?(寫出條件即可,不要求證明)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點O為直線AB上一點,過點O作射線OC,使∠BOC=135°,將一個含45°角的直角三角尺的一個頂點放在點O處,斜邊OM與直線AB重合,另外兩條直角邊都在直線AB的下方.
(1)將圖1中的三角尺繞著點O逆時針旋轉90°,如圖2所示,此時∠BOM=_____;在圖2中,OM是否平分∠CON?請說明理由;
(2)緊接著將圖2中的三角板繞點O逆時針繼續(xù)旋轉到圖3的位置所示,使得ON在∠AOC的內部,請?zhí)骄浚骸?/span>AOM與∠CON之間的數(shù)量關系,并說明理由;
(3)將圖1中的三角板繞點O按每秒5°的速度沿逆時針方向旋轉一周,在旋轉的過程中,第t秒時,直線ON恰好平分銳角∠AOC,則t的值為_____(直接寫出結果).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有一科技小組進行了機器人行走性能試驗,在試驗場地有A、B、C三點順次在同一筆直的賽道上,A、B兩點之間的距離是90米,甲、乙兩機器人分別從A、B兩點同時同向出發(fā)到終點C,乙機器人始終以50米分的速度行走,乙行走9分鐘到達C點.設兩機器人出發(fā)時間為t(分鐘),當t=3分鐘時,甲追上乙.
請解答下面問題:
(1)B、C兩點之間的距離是 米.
(2)求甲機器人前3分鐘的速度為多少米/分?
(3)若前4分鐘甲機器人的速度保持不變,在4≤t≤6分鐘時,甲的速度變?yōu)榕c乙相同,求兩機器人前6分鐘內出發(fā)多長時間相距28米?
(4)若6分鐘后甲機器人的速度又恢復為原來出發(fā)時的速度,直接寫出當t>6時,甲、乙兩機器人之間的距離S.(用含t的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知等腰三角形ABC中,AB=AC,點D、E分別在邊AB、AC上,且AD=AE,連接BE、CD,交于點F.
(1)判斷∠ABE與∠ACD的數(shù)量關系,并說明理由;
(2)求證:過點A、F的直線垂直平分線段BC.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com