【題目】如圖所示,MN是⊙O的切線,B為切點,BC是⊙O的弦且∠CBN=45°,過C的直線與⊙O,MN分別交于A,D兩點,過C作CE⊥BD于點E.、
(1)求證:CE是⊙O的切線;
(2)若∠D=30°,BD=4,求⊙O的半徑r.
【答案】
(1)證明:連接OC、OB,如圖,
∵MN是⊙O的切線,
∴OB⊥MN,
∴∠OBE=90°,
∵CE⊥MN,
∴∠CEB=90°,
∵∠BOC=2∠BAC=2×45°=90°,
∴四邊形OBEC為矩形,
∴∠OCE=90°,
∴OC⊥CE,
∴CE是⊙O的切線
(2)解:∵OB=OC,
∴四邊形OBEC為正方形,
∴BE=CE=OB=r,
∴DE=BD﹣BE=4﹣r,
在Rt△CED中,∵tanD= =tan30°,
∴ = ,
∴r=2 ﹣2
【解析】(1)連接OC、OB,依據(jù)切線的性質(zhì)可得到∠OBE=90°,然后,再由圓周角定理得到∠BOC=2∠BAC=90°,接下來,再證明四邊形OBEC為矩形,根據(jù)矩形的性質(zhì)可得到∠OCE=90°,最后,根據(jù)切線的判定定理進行判斷即可;
(2)先證明四邊形OBEC為正方形,然后再依據(jù)正方形的性質(zhì)得到BE=CE=OB=r,然后在Rt△CED中利用正切的定義得到=,然后再解關于r的方程即可.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,點O是AC與BD的交點,過點O的直線與BA的延長線,DC的延長線分別交于點E,F.
(1)求證:△AOE≌△COF.
(2)連接EC,AF,則EF與AC滿足什么數(shù)量關系時,四邊形AECF是矩形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】商場經(jīng)營的某品牌童裝,4月的銷售額為20000元,為擴大銷量,5月份商場對這種童裝打9折銷售,結(jié)果銷量增加了50件,銷售額增加了7000元.
(1)求該童裝4月份的銷售單價;
(2)若4月份銷售這種童裝獲利8000元,6月全月商場進行“六一”兒童節(jié)促銷活動.童裝在4月售價的基礎上一律打8折銷售,若該童裝的成本不變,則銷量至少為多少件,才能保證6月的利潤比4月的利潤至少增長25%?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】益馬高速通車后,將桃江馬跡塘的農(nóng)產(chǎn)品運往益陽的運輸成本大大降低。馬跡塘一農(nóng)戶需要將A,B兩種農(nóng)產(chǎn)品定期運往益陽某加工廠,每次運輸A,B產(chǎn)品的件數(shù)不變,原來每運一次的運費是1200元,現(xiàn)在每運一次的運費比原來減少了300元,A,B兩種產(chǎn)品原來的運費和現(xiàn)在的運費(單位:元∕件)如下表所示:
品種 | A | B |
原來的運費 | 45 | 25 |
現(xiàn)在的運費 | 30 | 20 |
(1)求每次運輸?shù)霓r(nóng)產(chǎn)品中A,B產(chǎn)品各有多少件?
(2)由于該農(nóng)戶誠實守信,產(chǎn)品質(zhì)量好,加工廠決定提高該農(nóng)戶的供貨量,每次運送的總件數(shù)增加8件,但總件數(shù)中B產(chǎn)品的件數(shù)不得超過A產(chǎn)品件數(shù)的2倍,問產(chǎn)品件數(shù)增加后,每次運費最少需要多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形OABC中,點O為原點,點A的坐標為(0,8),點C的坐標為(6,0).拋物線y=﹣ x2+bx+c經(jīng)過點A、C,與AB交于點D.
(1)求拋物線的函數(shù)解析式;
(2)點P為線段BC上一個動點(不與點C重合),點Q為線段AC上一個動點,AQ=CP,連接PQ,設CP=m,△CPQ的面積為S.
①求S關于m的函數(shù)表達式;
②當S最大時,在拋物線y=﹣ x2+bx+c的對稱軸l上,若存在點F,使△DFQ為直角三角形,請直接寫出所有符合條件的點F的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某飛機于空中A處探測到目標C,此時飛行高度AC=1200m,從飛機上看地平面指揮臺B的俯角α=16°31′,則飛機A與指揮臺B的距離等于(結(jié)果保留整數(shù))(參考數(shù)據(jù)sin16°31′=0.28,cos16°31′=0.95,tan16°31′=0.30)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,點E.F分別在AB、CD上,AE=CF,連接AF,BF,DE,CE,分別交于H、G.
求證:(1)四邊形AECF是平行四邊形。(2)EF與GH互相平分。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,以A(2,0),B(0,t)為頂點作等腰直角△ABC(其中∠ABC=90°,且點C落在第一象限內(nèi)),則點C關于y軸的對稱點C’的坐標為___.(用t的代數(shù)式表示)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com