【題目】如圖,某飛機(jī)于空中A處探測(cè)到目標(biāo)C,此時(shí)飛行高度AC=1200m,從飛機(jī)上看地平面指揮臺(tái)B的俯角α=16°31′,則飛機(jī)A與指揮臺(tái)B的距離等于(結(jié)果保留整數(shù))(參考數(shù)據(jù)sin16°31′=0.28,cos16°31′=0.95,tan16°31′=0.30)

【答案】4286m
【解析】解:在△ABC中,∵∠C=90°,∠B=∠α=16°31',AC=1200m,

∴sinB= ,即sin16°31′=

∴AB= ≈4286(m),

答:飛機(jī)A與指揮臺(tái)B的距離約為4286m.

所以答案是:4286m.

【考點(diǎn)精析】通過(guò)靈活運(yùn)用銳角三角函數(shù)的定義,掌握銳角A的正弦、余弦、正切、余切都叫做∠A的銳角三角函數(shù)即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)AC分別在x軸上、y軸上,CB//OAOA=8,若點(diǎn)B的坐標(biāo)為(a,b),b=.

(1)直接寫出點(diǎn)A、B、C的坐標(biāo);

(2)若動(dòng)點(diǎn)P從原點(diǎn)O出發(fā)沿x軸以每秒2個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),當(dāng)直線PC把四邊形OABC分成面積相等的兩部分停止運(yùn)動(dòng),求P點(diǎn)運(yùn)動(dòng)時(shí)間;

(3)在(2)的條件下,在y軸上是否存在一點(diǎn)Q,連接PQ,使三角形CPQ的面積與四邊形OABC的面積相等?若存在,求點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩名工人同時(shí)加工同一種零件,現(xiàn)根據(jù)兩人7天產(chǎn)品中每天出現(xiàn)的次品數(shù)情況繪制成如下不完整的統(tǒng)計(jì)圖和表,依據(jù)圖、表信息,解答下列問(wèn)題:

相關(guān)統(tǒng)計(jì)量表:

量數(shù)

眾數(shù)

中位數(shù)

平均數(shù)

方差

   

   

2

1

1

1

次品數(shù)量統(tǒng)計(jì)表:

天數(shù)

1

2

3

4

5

6

7

2

2

0

3

1

2

4

1

0

2

1

1

0

   

(1)補(bǔ)全圖、表.

(2)判斷誰(shuí)出現(xiàn)次品的波動(dòng)。

(3)估計(jì)乙加工該種零件30天出現(xiàn)次品多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,MN是⊙O的切線,B為切點(diǎn),BC是⊙O的弦且∠CBN=45°,過(guò)C的直線與⊙O,MN分別交于A,D兩點(diǎn),過(guò)C作CE⊥BD于點(diǎn)E.、

(1)求證:CE是⊙O的切線;
(2)若∠D=30°,BD=4,求⊙O的半徑r.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小玲和弟弟小東分別從家和圖書館同時(shí)出發(fā),沿同一條路相向而行,小玲開始跑步中途改為步行,到達(dá)圖書館恰好用30min.小東騎自行車以300m/min的速度直接回家,兩人離家的路程y(m)與各自離開出發(fā)地的時(shí)間x(min)之間的函數(shù)圖象如圖所示

(1)家與圖書館之間的路程為多少m,小玲步行的速度為多少m/min;

(2)求小東離家的路程y關(guān)于x的函數(shù)解析式,并寫出自變量的取值范圍;

(3)求兩人相遇的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,P是CD邊上一點(diǎn),且AP和BP分別平分∠DAB和∠CBA,若AD=5,AP=8,則△APB的周長(zhǎng)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在乘法公式的學(xué)習(xí)中,我們采用了構(gòu)造幾何圖形的方法研究問(wèn)題,借助直觀、形象的幾何模型,加深對(duì)乘法公式的認(rèn)識(shí)和理解,從中感悟數(shù)形結(jié)合的思想方法,感悟幾何與代數(shù)內(nèi)在的統(tǒng)一性,根據(jù)課堂學(xué)習(xí)的經(jīng)驗(yàn),解決下列問(wèn)題:

1)如圖①邊長(zhǎng)為(x+3)的正方形紙片,剪去一個(gè)邊長(zhǎng)為x的正方形之后,剩余部分可拼剪成一個(gè)長(zhǎng)方形(不重疊無(wú)縫隙),則這個(gè)長(zhǎng)方形的面積為   (用含x的式子表示).

2)如果你有5張邊長(zhǎng)為a的正方形紙,4張長(zhǎng)、寬分別為abab)的長(zhǎng)方形紙片,3張邊長(zhǎng)為b正方形紙片.現(xiàn)從其中取出若干張紙片,每種紙片至少取一張,把取出的這些紙片拼成一個(gè)正方形(不重疊無(wú)縫隙),則拼成的正方形的邊長(zhǎng)最長(zhǎng)可以為   

Aa+bBa+2b;Ca+3b;D.2a+b

31個(gè)大正方形和4個(gè)大小完全相同的小正方形按圖②③兩種方式擺放,求圖③中,大正方形中未被4個(gè)小正方形覆蓋部分的面積.(用含m、n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】10分在RtABC中,BAC=,D是BC的中點(diǎn),E是AD的中點(diǎn)過(guò)點(diǎn)A作AFBC交BE的延長(zhǎng)線于點(diǎn)F

1求證:AEFDEB;

2證明四邊形ADCF是菱形;

3AC=4,AB=5,求菱形ADCFD 的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】新學(xué)期伊始,學(xué)校聯(lián)系廠家出售作業(yè)本,若學(xué)生在學(xué)校購(gòu)買每個(gè)作業(yè)本1.5元,去校外的商店購(gòu)買每個(gè)作業(yè)本2元.學(xué)校對(duì)學(xué)生一學(xué)期使用作業(yè)本的數(shù)量進(jìn)行了調(diào)查,收集了30個(gè)學(xué)生一學(xué)期使用作業(yè)本的數(shù)據(jù),整理繪制成如圖的條形統(tǒng)計(jì)圖:

若學(xué)校在開學(xué)時(shí)要求每位學(xué)生在校一次性購(gòu)買18個(gè)作業(yè)本,設(shè)x表示學(xué)生本學(xué)期使用作業(yè)本的數(shù)量,y表示購(gòu)買作業(yè)本的費(fèi)用(單位:元).
(1)寫出x≤18和x>18時(shí),y與x的函數(shù)關(guān)系式;
(2)在上述頻數(shù)直方圖中,當(dāng)使用作業(yè)本的頻率不小于0.5時(shí),最少需要購(gòu)買幾個(gè)作業(yè)本;
(3)利用上述頻數(shù)直方圖,計(jì)算這30名學(xué)生平均使用作業(yè)本的費(fèi)用.

查看答案和解析>>

同步練習(xí)冊(cè)答案