【題目】益馬高速通車后,將桃江馬跡塘的農產品運往益陽的運輸成本大大降低。馬跡塘一農戶需要將A,B兩種農產品定期運往益陽某加工廠,每次運輸A,B產品的件數不變,原來每運一次的運費是1200元,現在每運一次的運費比原來減少了300元,A,B兩種產品原來的運費和現在的運費(單位:元∕件)如下表所示:
品種 | A | B |
原來的運費 | 45 | 25 |
現在的運費 | 30 | 20 |
(1)求每次運輸的農產品中A,B產品各有多少件?
(2)由于該農戶誠實守信,產品質量好,加工廠決定提高該農戶的供貨量,每次運送的總件數增加8件,但總件數中B產品的件數不得超過A產品件數的2倍,問產品件數增加后,每次運費最少需要多少元?
【答案】(1)每次運輸的農產品中A產品有10件,每次運輸的農產品中B產品有30件,(2)產品件數增加后,每次運費最少需要850元.
【解析】
(1)設每次運輸的農產品中A產品有x件,每次運輸的農產品中B產品有y件,根據表中的數量關系列出關于x和y的二元一次方程組,解之即可,
(2)設增加m件A產品,則增加了(8-m)件B產品,設增加供貨量后得運費為W元,根據(1)的結果結合圖表列出W關于m的一次函數,再根據“總件數中B產品的件數不得超過A產品件數的2倍”,列出關于m的一元一次不等式,求出m的取值范圍,再根據一次函數的增減性即可得到答案.
(1)設每次運輸的農產品中A產品有x件,每次運輸的農產品中B產品有y件,
根據題意得:
,
解得:,
答:每次運輸的農產品中A產品有10件,每次運輸的農產品中B產品有30件,
(2)設增加m件A產品,則增加了(8-m)件B產品,設增加供貨量后得運費為W元,
增加供貨量后A產品的數量為(10+m)件,B產品的數量為30+(8-m)=(38-m)件,
根據題意得:W=30(10+m)+20(38-m)=10m+790,
由題意得:38-m≤2(10+m),
解得:m≥6,
即6≤m≤8,
∵一次函數W隨m的增大而增大
∴當m=6時,W最小=850,
答:產品件數增加后,每次運費最少需要850元.
科目:初中數學 來源: 題型:
【題目】已知拋物線y=3ax2+2bx+c,
(Ⅰ)若a=b=1,c=﹣1,求該拋物線與x軸公共點的坐標;
(Ⅱ)若a=b=1,且當﹣1<x<1時,拋物線與x軸有且只有一個公共點,求c的取值范圍;
(Ⅲ)若a+b+c=0,且x1=0時,對應的y1>0;x2=1時,對應的y2>0,試判斷當0<x<1時,拋物線與x軸是否有公共點?若有,請證明你的結論;若沒有,闡述理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知在平面直角坐標系xOy中,O為坐標原點,線段AB的兩個端點A(0,2),B(1,0)分別在y軸和x軸的正半軸上,點C為線段AB的中點,現將線段BA繞點B按順時針方向旋轉90°得到線段BD,拋物線y=ax2+bx+c(a≠0)經過點D.
(1)如圖1,若該拋物線經過原點O,且a=﹣ .
①求點D的坐標及該拋物線的解析式;
②連結CD,問:在拋物線上是否存在點P,使得∠POB與∠BCD互余?若存在,請求出所有滿足條件的點P的坐標,若不存在,請說明理由;
(2)如圖2,若該拋物線y=ax2+bx+c(a≠0)經過點E(1,1),點Q在拋物線上,且滿足∠QOB與∠BCD互余.若符合條件的Q點的個數是4個,請直接寫出a的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩名工人同時加工同一種零件,現根據兩人7天產品中每天出現的次品數情況繪制成如下不完整的統計圖和表,依據圖、表信息,解答下列問題:
相關統計量表:
量數 人 | 眾數 | 中位數 | 平均數 | 方差 |
甲 |
|
| 2 |
|
乙 | 1 | 1 | 1 |
次品數量統計表:
天數 人 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
甲 | 2 | 2 | 0 | 3 | 1 | 2 | 4 |
乙 | 1 | 0 | 2 | 1 | 1 | 0 |
|
(1)補全圖、表.
(2)判斷誰出現次品的波動。
(3)估計乙加工該種零件30天出現次品多少件?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】若直線l1經過點(0,4),l2經過(3,2),且l1與l2關于x軸對稱,則l1與l2的交點坐標為
A. (-2,0) B. (2,0) C. (-6,0) D. (6,0)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,MN是⊙O的切線,B為切點,BC是⊙O的弦且∠CBN=45°,過C的直線與⊙O,MN分別交于A,D兩點,過C作CE⊥BD于點E.、
(1)求證:CE是⊙O的切線;
(2)若∠D=30°,BD=4,求⊙O的半徑r.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小玲和弟弟小東分別從家和圖書館同時出發(fā),沿同一條路相向而行,小玲開始跑步中途改為步行,到達圖書館恰好用30min.小東騎自行車以300m/min的速度直接回家,兩人離家的路程y(m)與各自離開出發(fā)地的時間x(min)之間的函數圖象如圖所示
(1)家與圖書館之間的路程為多少m,小玲步行的速度為多少m/min;
(2)求小東離家的路程y關于x的函數解析式,并寫出自變量的取值范圍;
(3)求兩人相遇的時間.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在乘法公式的學習中,我們采用了構造幾何圖形的方法研究問題,借助直觀、形象的幾何模型,加深對乘法公式的認識和理解,從中感悟數形結合的思想方法,感悟幾何與代數內在的統一性,根據課堂學習的經驗,解決下列問題:
(1)如圖①邊長為(x+3)的正方形紙片,剪去一個邊長為x的正方形之后,剩余部分可拼剪成一個長方形(不重疊無縫隙),則這個長方形的面積為 (用含x的式子表示).
(2)如果你有5張邊長為a的正方形紙,4張長、寬分別為a、b(a>b)的長方形紙片,3張邊長為b正方形紙片.現從其中取出若干張紙片,每種紙片至少取一張,把取出的這些紙片拼成一個正方形(不重疊無縫隙),則拼成的正方形的邊長最長可以為
A.a+b;B.a+2b;C.a+3b;D.2a+b.
(3)1個大正方形和4個大小完全相同的小正方形按圖②③兩種方式擺放,求圖③中,大正方形中未被4個小正方形覆蓋部分的面積.(用含m、n的代數式表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】把下列各數分別填入它所屬于的集合的括號內.
9,,+4.3,|﹣0.5|,﹣(+7),18%,(﹣13)4,﹣6,0.
正分數集合{_________}
負分數集合{_________}
負整數集合{__________}
非負整數集合{________}.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com